Albumin-Gold Nanorod Nanoplatform for Cell-Mediated Tumoritropic Delivery with Homogenous ChemoDrug Distribution and Enhanced Retention Ability
Autor: | Yu-Fen Huang, Yuh-Chang Sun, Hsien-Ting Chiu, Cheng-Kuan Su, Chi-Shiun Chiang |
---|---|
Rok vydání: | 2017 |
Předmět: |
Male
drug retention ability Serum albumin Medicine (miscellaneous) core-shell nanoparticle Antineoplastic Agents 02 engineering and technology 010402 general chemistry 01 natural sciences Mice Drug Therapy In vivo gold nanorod Albumins medicine Distribution (pharmacology) Animals Doxorubicin Pharmacology Toxicology and Pharmaceutics (miscellaneous) albumin Drug Carriers Nanotubes biology Chemistry Macrophages Prostatic Neoplasms Hyperthermia Induced Photothermal therapy 021001 nanoscience & nanotechnology 0104 chemical sciences Mice Inbred C57BL cell-mediated drug delivery Disease Models Animal RAW 264.7 Cells Drug delivery biology.protein Cancer research Gold 0210 nano-technology Drug carrier Intracellular homogenous drug distribution medicine.drug Research Paper |
Zdroj: | Theranostics |
ISSN: | 1838-7640 |
Popis: | Recently, living cells with tumor-homing properties have provided an exciting opportunity to achieve optimal delivery of nanotherapeutic agents. However, premature payload leakage may impair the host cells, often leading to inadequate in vivo investigations or therapeutic efficacy. Therefore, a nanoplatform that provides a high drug-loading capacity and the precise control of drug release is required. In the present study, a robust one-step synthesis of a doxorubicin (DOX)-loaded gold nanorod/albumin core-shell nanoplatform (NR@DOX:SA) was designed for effective macrophage-mediated delivery to demonstrate how nanoparticle-loaded macrophages improve photothermal/chemodrug distribution and retention ability to achieve enhanced antitumor effects. The serum albumin shell of these nanoagents served as a drug reservoir to delay the intracellular DOX release and drug-related toxicity that impairs the host cell carriers. Near-infrared laser irradiation enabled on-demand payload release to destroy neighboring tumor cells. A series of in vivo quantitative analyses demonstrated that the nanoengineered macrophages delivered the nanodrugs through tumor-tropic migration to tumor tissues, resulting in the twice homogenous and efficient photothermal activations of drug release to treat prostate cancer. By contrast, localized pristine NR@DOX:SAs exhibit limited photothermal drug delivery that further reduces their retention ability and therapeutic efficacy after second combinational treatment, leading to a failure of cancer therapy. Moreover, the resultant unhealable wounds impair quality of life. Free DOX has rapid clearance and therefore exhibits limited antitumor effects. Our findings suggest that in comparison with pristine nanoparticles or free DOX, the nanoengineered macrophages effectively demonstrate the importance and effect of homogeneous drug distribution and retention ability in cancer therapy. |
Databáze: | OpenAIRE |
Externí odkaz: |