Milnor invariants of covering links
Autor: | Akira Yasuhara, Natsuka Kobayashi, Kodai Wada |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Modulo 010102 general mathematics Cobordism Geometric Topology (math.GT) Brunnian link 01 natural sciences Mathematics::Algebraic Topology Mathematics::Geometric Topology 57M12 57M25 57M27 010101 applied mathematics Mathematics - Geometric Topology Mathematics::Algebraic Geometry Iterated function Mathematics::K-Theory and Homology FOS: Mathematics Geometry and Topology 0101 mathematics Invariant (mathematics) Mathematics |
Popis: | We consider Milnor invariants for certain covering links as a generalization of covering linkage invariants formulated by R. Hartley and K. Murasugi. A set of Milnor invariants for covering links is a cobordism invariant of a link, and that this invariant can distinguish some links for which the ordinary Milnor invariants coincide. Moreover, for a Brunnian link $L$, the first non-vanishing Milnor invariants of $L$ is modulo-$2$ congruent to a sum of Milnor invariants of covering links. As a consequence, a sum of linking numbers of ' iterated' covering links gives the first non-vanishing Milnor invariant of $L$ modulo $2$. 11 pages, 10 figures |
Databáze: | OpenAIRE |
Externí odkaz: |