Parallel Algorithms for Operations on Multi-valued Decision Diagrams

Autor: Guillaume Perez, Jean-Charles Régin
Přispěvatelé: Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe CEP, Modèles Discrets pour les Systèmes Complexes (Laboratoire I3S - MDSC), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: AAAI 2018 Conference | The Thirty-Second AAAI Conference on Artificial Intelligence
AAAI 2018 Conference | The Thirty-Second AAAI Conference on Artificial Intelligence, Feb 2018, New Orleans, France
Popis: Multi-valued Decision Diagrams (MDDs) have been extensively studied in the last ten years. Recently, efficient algorithms implementing operators such as reduction, union, intersection, difference, etc., have been designed. They directly deal with the graph structure of the MDD and a time reduction of several orders of magnitude in comparison to other existing algorithms have been observed. These operators have permitted a new look at MDDs, because extremely large MDDs can finally be manipulated as shown by the models used to solve complex application in music generation. However, MDDs become so large (50GB) that minutes are sometimes required to perform some operations. In order to accelerate the manipulation of MDDs, parallel algorithms are required. In this paper, we introduce such algorithms. We carefully design them in order to overcome inherent difficulties of the parallelization of sequential algorithms such as data dependencies, software lock-out, false sharing, or load balancing. As a result, we observe a speed-up , i.e. ratio between parallel and sequential runtimes, growing linearly with the number of cores.
Databáze: OpenAIRE