Font adaptive word indexing of modern printed documents
Autor: | Giovanni Soda, Simone Marinai, Emanuele Marino |
---|---|
Rok vydání: | 2006 |
Předmět: |
Abstracting and Indexing
Computer science Word processing Information Storage and Retrieval Character encoding Documentation computer.software_genre Sensitivity and Specificity Pattern Recognition Automated User-Computer Interface Search engine Text processing Artificial Intelligence Image Interpretation Computer-Assisted Web page Font Computer Graphics Image retrieval Natural Language Processing Publishing Electronic Data Processing Information retrieval business.industry Applied Mathematics Search engine indexing Libraries Digital Reproducibility of Results Signal Processing Computer-Assisted Image Enhancement Semantics Metadata Vocabulary Controlled Computational Theory and Mathematics Index (publishing) Subtraction Technique Computer Vision and Pattern Recognition Artificial intelligence business computer Algorithms Software Natural language processing |
Zdroj: | IEEE Transactions on Pattern Analysis and Machine Intelligence. 28:1187-1199 |
ISSN: | 2160-9292 0162-8828 |
DOI: | 10.1109/tpami.2006.162 |
Popis: | We propose an approach for the word-level indexing of modern printed documents which are difficult to recognize using current OCR engines. By means of word-level indexing, it is possible to retrieve the position of words in a document, enabling queries involving proximity of terms. Web search engines implement this kind of indexing, allowing users to retrieve Web pages on the basis of their textual content. Nowadays, digital libraries hold collections of digitized documents that can be retrieved either by browsing the document images or relying on appropriate metadata assembled by domain experts. Word indexing tools would therefore increase the access to these collections. The proposed system is designed to index homogeneous document collections by automatically adapting to different languages and font styles without relying on OCR engines for character recognition. The approach is based on three main ideas: the use of Self Organizing Maps (SOM) to perform unsupervised character clustering, the definition of one suitable vector-based word representation whose size depends on the word aspect-ratio, and the run-time alignment of the query word with indexed words to deal with broken and touching characters. The most appropriate applications are for processing modern printed documents (17th to 19th centuries) where current OCR engines are less accurate. Our experimental analysis addresses six data sets containing documents ranging from books of the 17th century to contemporary journals. |
Databáze: | OpenAIRE |
Externí odkaz: |