First-Order Hyperpolarizability of Triphenylamine Derivatives Containing Cyanopyridine: Molecular Branching Effect
Autor: | Marcelo G. Vivas, Leonardo De Boni, D. L. Silva, Chantal Andraud, Ruben D. Fonseca, Gwennaelle Eucat, Cleber Renato Mendonça, Yann Bretonnière |
---|---|
Přispěvatelé: | Instituto de Física de São Carlos (IFSC-USP), Universidade de São Paulo = University of São Paulo (USP), Instituto de Ciência de Tecnologia, Universidade Federal de Alfenas, Departamento de Ciências da Natureza, Universidade Federal de São Carlos [São Carlos] (UFSCar), Laboratoire de Chimie - UMR5182 (LC), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Universidade de São Paulo (USP), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut de Chimie du CNRS (INC) |
Rok vydání: | 2018 |
Předmět: |
Dipole Momento
Materials science Hyperpolarizability 02 engineering and technology Electronic structure [CHIM.INOR]Chemical Sciences/Inorganic chemistry DENSIDADE (TEORIA) 010402 general chemistry Branching (polymer chemistry) Triphenylamine Continuum Mechanics 01 natural sciences chemistry.chemical_compound Molecule Physical and Theoretical Chemistry Density Functional Theory [CHIM.ORGA]Chemical Sciences/Organic chemistry Scattering [CHIM.CATA]Chemical Sciences/Catalysis [CHIM.MATE]Chemical Sciences/Material chemistry Molecules 021001 nanoscience & nanotechnology 0104 chemical sciences Surfaces Coatings and Films Electronic Optical and Magnetic Materials Dipole Crystallography General Energy Electronic Structure chemistry Excitons Density functional theory 0210 nano-technology |
Zdroj: | REDICUC-Repositorio CUC Corporación Universidad de la Costa instacron:Corporación Universidad de la Costa Journal of Physical Chemistry C Journal of Physical Chemistry C, 2018, 122 (3), pp.1770-1778. ⟨10.1021/acs.jpcc.7b05829⟩ Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP Journal of Physical Chemistry C, American Chemical Society, 2018, 122 (3), pp.1770-1778. ⟨10.1021/acs.jpcc.7b05829⟩ |
ISSN: | 1932-7455 1932-7447 |
Popis: | International audience; In the present work, we report the multibranching effect on the dynamic first-order hyperpolarizability (β(−2ω; ω, ω)) of triphenylamine derivatives containing cyanopyridine one-branch (dipolar structure), two-branch (V-shaped structure), and three-branch (octupolar structure) structures. For this study, we used the hyper-Rayleigh scattering (HRS) technique involving picosecond pulse trains at 1064 nm. Our results show that βHRS increases from 2.02 × 10–28 to 9.24 × 10–28 cm5/esu when an extra branch is added to the molecule, configuring a change from a dipolar to a V-shaped (quadrupolar) molecular structure. When a third branch is added, leading to an octupolar structure, a decrease to 3.21 × 10–28 cm5/esu is observed. Such a significant decrease in βHRS is attributed to a negative contribution presented in the βHRS description by using a three-level energy approach due to their electronic structure and considering a specific combination of the angle between the dipole moments. On the other hand, the enhancement of βHRS found for the quadrupolar structure is associated with the cooperative enhancement due to the electronic coupling between the branches that increases considerably the transition dipole moment and permanent dipole moment change. To explain the βHRS results obtained for different molecules, we employed the HRS figure of merit, FOMHRS = βHRS/Neff3/2, in which Neff is the effective number of π-conjugated bonds, and the few-energy level approach for βHRS within the Frenkel exciton model. To shed more light on the experimental results interpretation, we performed time-dependent density functional theory calculations combined with a polarizable continuum model to confirm the energy and oscillator strength of the electronic transitions assumed in the Frenkel exciton model employed here. |
Databáze: | OpenAIRE |
Externí odkaz: |