Streaming Platform and Strategic Recommendation Bias

Autor: Germain Gaudin, Marc Bourreau
Přispěvatelé: Département Sciences Economiques et Sociales (SES), Télécom ParisTech, Economie Gestion (ECOGE), Institut interdisciplinaire de l’innovation (I3, une unité mixte de recherche CNRS (UMR 9217)), École polytechnique (X)-Télécom ParisTech-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Télécom ParisTech-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Télécom ParisTech-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Rok vydání: 2018
Předmět:
Zdroj: Journal of Economics and Management Strategy
Journal of Economics and Management Strategy, Wiley, In press, ⟨10.1111/jems.12452⟩
ISSN: 1556-5068
1058-6407
1530-9134
DOI: 10.2139/ssrn.3338744
Popis: We consider a platform that carries content from two upstream content providers and presents personalized recommendations to participating customers. We focus on streaming platforms in media markets, where users pay a subscription fee to join the platform but no usage fee, and consume a mix of content originating from each provider. We characterize the bias in the user-specific recommendations offered by the platform when one content provider charges lower royalties than the other. We establish that if consumers are sufficiently insensitive to bias, the recommendation system allows the platform to credibly threaten upstream providers to steer consumers away from their content, which reduces their market power. We also investigate the effects of vertical integration by the platform and show the robustness of our results to non-linear (personalized) streaming services.
Databáze: OpenAIRE