Cell adhesion and osteogenic differentiation on three-dimensional pillar surfaces
Autor: | Susanna Aura, Emilia Kaivosoja, Gonçalo Barreto, Yrjö T. Konttinen, Antti Soininen, Pia Suvanto, Sami Franssila |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Materials science
ta221 Biomedical Engineering Cell Line Biomaterials Calcification Physiologic Osteogenesis Cell Adhesion medicine Humans Osteopontin Fibroblast Cytoskeleton Cell adhesion ta216 Titanium Osteoblasts Tissue Scaffolds biology Mesenchymal stem cell Metals and Alloys Cell Differentiation Mesenchymal Stem Cells Fibroblasts Actin cytoskeleton Antigens Differentiation Cell biology medicine.anatomical_structure Ceramics and Composites biology.protein Alkaline phosphatase Immunostaining |
Zdroj: | JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A. (3):842-852 |
ISSN: | 1549-3296 |
Popis: | We hypothesized that when compared with conventional two-dimensional (2D) cultures, substrates containing 3D micropillars would allow cells to grow at levels, activating their cytoskeleton to promote osteogenesis. Fibroblasts, osteoblast-like cells, and mesenchymal stem cells (MSCs) were studied. Planar substrates were compared with 200-nm-, 5-μm-, and 20-μm-high pillars of Ormocomp®, Si, diamond-like carbon, or TiO2. Scanning electron microscopy and staining of actin cytoskeleton showed 7.5-h adhesion to pillar edges and 5-day stretching between adhesion contacts > 100-μm distances of fibroblast and MSC in 3D networks, whereas SaOS-2 cells adhered flatly and individually on horizontal and vertical surfaces. ERK and ROCK immunostaining at 14 and 21 days confirmed activation of the cytoskeleton. In contrast to expectations, success to induce osteogenesis was dominated by the cytocompatibility of the substrate over the 3D structure. This was shown using early alkaline phosphatase, intermediate osteopontin, and late mineralization markers, together with bone nodule formation, which were seen in planar substrates and low-profile TiO2 pillars, but were poor in the 20-μm landscape. The lack of intercellular contacts seems to halt the osteogenesis-promoting effects of cytoskeletal organization and tension described earlier. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 842–852, 2013. |
Databáze: | OpenAIRE |
Externí odkaz: |