Three-partition Hodge integrals and the topological vertex
Autor: | Kanehisa Takasaki, Toshio Nakatsu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
High Energy Physics - Theory
FOS: Physical sciences Topology 01 natural sciences Fock space symbols.namesake Mathematics - Algebraic Geometry 0103 physical sciences Mathematics - Quantum Algebra FOS: Mathematics Partition (number theory) Quantum Algebra (math.QA) Ramanujan tau function 0101 mathematics Korteweg–de Vries equation Algebraic Geometry (math.AG) Mathematical Physics Mathematics Nonlinear Sciences - Exactly Solvable and Integrable Systems 010102 general mathematics Generating function Statistical and Nonlinear Physics Torus Mathematical Physics (math-ph) Topological string theory High Energy Physics - Theory (hep-th) Homogeneous space symbols 010307 mathematical physics Exactly Solvable and Integrable Systems (nlin.SI) |
Popis: | A conjecture on the relation between the cubic Hodge integrals and the topological vertex in topological string theory is resolved. A central role is played by the notion of generalized shift symmetries in a fermionic realization of the two-dimensional quantum torus algebra. These algebraic relations of operators in the fermionic Fock space are used to convert generating functions of the cubic Hodge integrals and the topological vertex to each other. As a byproduct, the generating function of the cubic Hodge integrals at special values of the parameters therein is shown to be a tau function of the generalized KdV (aka Gelfand-Dickey) hierarchies. 44 pages, 2 figures |
Databáze: | OpenAIRE |
Externí odkaz: |