Electromagnetic waves in an inhomogeneous medium
Autor: | Toufic Abboud, Jean-Claude Nédélec |
---|---|
Rok vydání: | 1992 |
Předmět: |
Applied Mathematics
010102 general mathematics Mathematical analysis Mathematics::Analysis of PDEs Perturbation (astronomy) Existence theorem Mathematics::Spectral Theory 01 natural sciences Electromagnetic radiation 010101 applied mathematics symbols.namesake Uniqueness theorem for Poisson's equation Maxwell's equations Variational principle Electromagnetism symbols Uniqueness 0101 mathematics Analysis Mathematics |
Zdroj: | Journal of Mathematical Analysis and Applications. 164(1):40-58 |
ISSN: | 0022-247X |
DOI: | 10.1016/0022-247x(92)90144-3 |
Popis: | In this paper we consider the electromagnetic wave problem in an inhomogeneous medium. We first prove uniqueness of the solution using Rellich and Cauchy-Kowalewska theorems. Then we explicitly compute the Dirichlet-Neumann operator on the sphere, we reduce the equations to a problem on a truncated domain, and we give a variational formulation. This formulation reads as a compact perturbation of a coercive operator, which leads to the existence of the solution according to Fredholm's alternative. |
Databáze: | OpenAIRE |
Externí odkaz: |