Constructing totally positive piecewise Chebyshevian B-spline bases

Autor: Marie-Laurence Mazure
Přispěvatelé: Calcul des Variations, Géométrie, Image (CVGI ), Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Rok vydání: 2018
Předmět:
Zdroj: Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics, Elsevier, 2018, 342, pp.550-586. ⟨10.1016/j.cam.2018.03.032⟩
Journal of Computational and Applied Mathematics, 2018, 342, pp.550-586. ⟨10.1016/j.cam.2018.03.032⟩
ISSN: 0377-0427
DOI: 10.1016/j.cam.2018.03.032
Popis: We consider piecewise Chebyshevian splines, in the sense of splines with pieces taken from any different five-dimensional Extended Chebyshev spaces, and with connection matrices at the knots. In this large context we establish necessary and sufficient conditions for the existence of totally positive refinable B-spline bases. These conditions are applied in many important special cases, e.g. symmetric cardinal geometrically continuous quartic B-spline, parametrically continuous mixed L-splines. The great variety of illustrations provided proves the richness of this class of splines for design. This richness can be exploited in various other fields as well.
Databáze: OpenAIRE