A Numerical Convergence Study of some Open Boundary Conditions for Euler equations

Autor: Lucie Quibel, Clément Colas, M. Ferrand, E. Le Coupanec, Olivier Hurisse, Jean-Marc Hérard
Přispěvatelé: EDF R&D (EDF R&D), EDF (EDF), Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF (EDF)-EDF (EDF), Centre d'Enseignement et de Recherche en Environnement Atmosphérique (CEREA), École des Ponts ParisTech (ENPC)-EDF R&D (EDF R&D), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Finite Volumes for Complex Applications FVCA9
Finite Volumes for Complex Applications FVCA9, Jun 2020, Bergen, Norway. ⟨10.1007/978-3-030-43651-3_62⟩
Finite Volumes for Complex Applications FVCA9, Jun 2020, Bergen, Norway
Finite Volumes for Complex Applications IX-Methods, Theoretical Aspects, Examples ISBN: 9783030436506
HAL
DOI: 10.1007/978-3-030-43651-3_62⟩
Popis: International audience; We discuss herein the suitability of some open boundary conditions while comparing approximate solutions of one-dimensional Riemann problems in a bounded sub-domain with the restriction in this sub-domain of the exact solution in the infinite domain, considering the Euler system of gas dynamics. Assuming that no information is known from outside of the domain, some basic open boundary condition specifications are given, and a measure of the L 1 norm of the error inside the computational domain enables to show consistency errors in situations involving outgoing shock waves, depending on the chosen boundary condition formulation. This investigation has been performed with Finite Volume methods, using approximate Riemann solvers in order to compute numerical fluxes for both inner and boundary interfaces.
Databáze: OpenAIRE