Prediction of Oxygen Transfer and Gas Hold-Up in Pneumatic Bioreactors Containing Viscous Newtonian Fluids

Autor: Mendes, Caroline E., Badino, Alberto C.
Jazyk: angličtina
Rok vydání: 2015
Předmět:
DOI: 10.5281/zenodo.1107051
Popis: Pneumatic reactors have been widely employed in various sectors of the chemical industry, especially where are required high heat and mass transfer rates. This study aimed to obtain correlations that allow the prediction of gas hold-up (Ԑ) and volumetric oxygen transfer coefficient (kLa), and compare these values, for three models of pneumatic reactors on two scales utilizing Newtonian fluids. Values of kLa were obtained using the dynamic pressure-step method, while e was used for a new proposed measure. Comparing the three models of reactors studied, it was observed that the mass transfer was superior to draft-tube airlift, reaching e of 0.173 and kLa of 0.00904s-1. All correlations showed good fit to the experimental data (R2≥94%), and comparisons with correlations from the literature demonstrate the need for further similar studies due to shortage of data available, mainly for airlift reactors and high viscosity fluids.
{"references":["Y. Harada, K. Sakata, and S. Sato, \"Fermentation Pilot Plant,\" in in\nFermentation and biochemical engineering handbook: Principles,\nprocess design, and equipment, 2nd ed., H. C. Vogel and C. L. Todaro,\nEds. 1996, p. 828.","F. Garcia-Ochoa, E. Gomez, V. E. Santos, and J. C. Merchuk, \"Oxygen\nuptake rate in microbial processes: An overview,\" Biochemical\nEngineering Journal, vol. 49, no. 3, pp. 289–307, May 2010.","J. B. Snape, J. Zahradnik, M. Fialov, and N. H. Thomas, \"Liquid-Phase\nProperties A N D Sparger Design Effects In An External-Loop Airlift\nReactor,\" Chemical Engineering Science,vol. 50, no. 20, pp. 3175–3186,\n1995.","H. P. Luo and M. H. Al-Dahhan, \"Local gas holdup in a draft tube airlift\nbioreactor,\" Chemical Engineering Science, vol. 65, no. 15, pp. 4503–\n4510, Aug. 2010.","R. S. Abdulmohsin, B. A. Abid, and M. H. Al-Dahhan, \"Heat transfer\nstudy in a pilot-plant scale bubble column,\" Chemical Engineering\nResearch and Design, vol. 89, no. 1, pp. 78–84, Jan. 2011.","J. E. Juliá, L. Hernández, S. Chiva, and A. Vela, \"Hydrodynamic\ncharacterization of a needle sparger rectangular bubble column:\nHomogeneous flow, static bubble plume and oscillating bubble plume,\"\nChemical Engineering Science, vol. 62, no. 22, pp. 6361–6377, Nov.\n2007.","D. Ruen-ngam, P. Wongsuchoto, A. Limpanuphap, T. Charinpanitkul,\nand P. Pavasant, \"Influence of salinity on bubble size distribution and\ngas–liquid mass transfer in airlift contactors,\" Chemical Engineering\nJournal, vol. 141, no. 1–3, pp. 222–232, Jul. 2008.","E. Bekassy-Molnar, J. G. Majeed, and G. Vatai, \"Overall volumetric\noxygen transfer coefficient and optimal geometry of airlift tube reactor,\"\nChemical Engineering Journal, vol. 68, no. 1, pp. 29–33, Jul. 1997.","F. Bai, L. Wang, H. Huang, J. Xu, J. Caesar, D. Ridgway, T. Gu, and M.\nMoo-young, \"Oxygen mass-transfer performance of low viscosity gasliquid-\nsolid system in a split-cylinder airlift bioreactor,\" pp. 1109–1113,\n2001.\n[10] Z. Deng, T. Wang, N. Zhang, and Z. Wang, \"Gas holdup, bubble\nbehavior and mass transfer in a 5m high internal-loop airlift reactor with\nnon-Newtonian fluid,\" Chemical Engineering Journal, vol. 160, no. 2,\npp. 729–737, Jun. 2010.\n[11] M. O. Cerri, L. M. Policarpo, and A. C. Badino, \"Gas Hold-Up and\nMass Transfer in Three Geometrically Similar Internal Loop Airlift\nReactors Using Newtonian Fluids\", International Journal Of Chemical,\nvol. 8, 2010.\n[12] M. O. Cerri and A. C. Badino, \"Oxygen transfer in three scales of\nconcentric tube airlift bioreactors,\" Biochemical Engineering Journal,\nvol. 51, no. 1–2, pp. 40–47, Aug. 2010.\n[13] M. Gavrilescu and R. Z. Tudose, \"Residence time distribution of the\nliquid phase in a concentric-tube airlift reactor,\" Chemical Engineering\nand Processing: Process Intensification, vol. 38, no. 3, pp. 225–238,\nMay 1999.\n[14] M. K. Moraveji, M. M. Pasand, R. Davarnejad, and Y. Chisti, \"Effects\nof surfactants on hydrodynamics and mass transfer in a split-cylinder\nairlift reactor,\" The Canadian Journal of Chemical Engineering, vol. 90,\nno. 1, pp. 93–99, Feb. 2012.\n[15] M. K. Moraveji, E. Mohsenzadeh, M. E. Fakhari, and R. Davarnejad,\n\"Effects of surface active agents on hydrodynamics and mass transfer\ncharacteristics in a split-cylinder airlift bioreactor with packed bed,\"\nChemical Engineering Research and Design, vol. 90, no. 7, pp. 899–\n905, Jul. 2012.\n[16] H. Hikita, S. Asai, K. Tanigawa, K. Segawa and M. Kitao, \"Gas hold-up\nin bubble columns\", The Chemical Engineering Journal, vol.20, pp.59-\n67, 1980.\n[17] J. M. Vasconcelos, J. M. Rodrigues, S. C. Orvalho, S. Alves, R. Mendes,\nand A. Reis, \"Effect of contaminants on mass transfer coefficients in\nbubble column and airlift contactors,\" Chemical Engineering Science,\nvol. 58, no. 8, pp. 1431–1440, Apr. 2003.\n[18] A. S. Mirón, M. C. C. Garcı́a, A. C. Gómez, F. G. Camacho, E. M.\nGrima, and Y. Chisti, \"Shear stress tolerance and biochemical\ncharacterization of Phaeodactylum tricornutum in quasi steady-state\ncontinuous culture in outdoor photobioreactors,\" Biochemical\nEngineering Journal, vol. 16, no. 3, pp. 287–297, Dec. 2003.\n[19] Y. Chisti, Airlift bioreactors. 1989, p. 345.\n[20] V. Linek, M. Kordač, and T. Moucha, \"Mechanism of mass transfer\nfrom bubbles in dispersions,\" Chemical Engineering and Processing:\nProcess Intensification, vol. 44, no. 1, pp. 121–130, Jan. 2005.\n[21] F. P. Shariati, B. Bonakdarpour, and M. R. Mehrnia, \"Hydrodynamics\nand oxygen transfer behaviour of water in diesel microemulsions in a\ndraft tube airlift bioreactor,\" Chemical Engineering and Processing:\nProcess Intensification, vol. 46, no. 4, pp. 334–342, Apr. 2007.\n[22] A. Schumpe, A.K.Saxena, L.K. Fang, \"Gas liquid mass transfer in a\nslurry bubble column\", Chemical Engineering Science, vol. 42, no. 7,\npp. 1787-1796, 1987.\n[23] M. Urseanu, R. P. Guit, A. Stankiewicz, G. Van Kranenburg, and J. H.\nG. Lommen, \"Influence of operating pressure on the gas hold-up in\nbubble columns for high viscous media,\" Chemical Engineering\nScience, vol. 58, no. 3–6, pp. 697–704, Feb. 2003.\n[24] K. Akita and F. Yoshida, \"Gas Holdup and Volumetric Mass Transfer\nCoefficient in Bubble Columns. Effects of Liquid Properties,\" Industrial\n& Engineering Chemistry Process Design and Development, vol. 12, no.\n1, pp. 76–80, Jan. 1973.\n[25] Y. Kawase and N. Hashiguchi, \"Gas-liquid mass transfer in external\nloop airlift columns with newtonian and non-newtonian fluids,\" The\nChemical Engineering Journal, vol. 62, pp. 35–42, 1996.\n[26] K. Koide, H. Sato, and S. Iwamoto, \"Gas holdup and volumetric liquidphase\nmass transfer coefficient in bubble column with draught tube with\ngas dispersion into annulus\", Journal of Chemical Engineering of Japan,\nno. 1, pp. 1–7, 1983.\n[27] B. Gourich, N. EL Azher, M. Soulami Bellhaj, H. Delmas, a. Bouzidi,\nand M. Ziyad, \"Contribution to the study of hydrodynamics and gas–\nliquid mass transfer in a two- and three-phase split-rectangular airlift\nreactor,\" Chemical Engineering and Processing: Process Intensification,\nvol. 44, no. 10, pp. 1047–1053, Oct. 2005.\n[28] K.H. Choi, Y. Chisti, M. Moo-Young \"Influence fo the gas-liquid\nseparator design on hydrodynamic and mass transfer performance of\nsplit-channel airlift reactors,\" Journal of Chemical Technology and\nBiotechnology, vol. 62, pp. 327-332, 1995.\n[29] E. Mohsenzadeh, M. K. Moraveji, and R. Davarnejad, \"Influence of\nacetaminophen on gas hold-up, liquid circulation velocity and mass\ntransfer coefficient in a split-cylinder airlift bioreactor,\" Journal of\nMolecular Liquids, vol. 173, pp. 113–118, Sep. 2012.\n[30] M. K. Moraveji, B. Sajjadi, and R. Davarnejad, \"Gas-Liquid\nHydrodynamics and Mass Transfer in Aqueous Alcohol Solutions in a\nSplit-Cylinder Airlift Reactor,\" Chemical Engineering & Technology,\nvol. 34, no. 3, pp. 465–474, Mar. 2011."]}
Databáze: OpenAIRE