An a priori error analysis of a type III thermoelastic problem with two porosities
Autor: | Noelia Bazarra, José R. Fernández, Ramón Quintanilla, Sofía Suárez |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
Rok vydání: | 2022 |
Předmět: |
74 Mechanics of deformable solids::74F Coupling of solid mechanics with other effects [Classificació AMS]
Numerical Analysis 1299 Otras Especialidades Matemáticas 12 Matemáticas Applied Mathematics Finite elements 1206 Análisis Numérico Double porosity Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC] Type III thermoelasticity Computational Mathematics A priori error estimates Numerical simulations Thermoelasticity Termoelasticitat Analysis |
Zdroj: | Numerical Methods for Partial Differential Equations. 39:1067-1084 |
ISSN: | 1098-2426 0749-159X |
Popis: | In this work, we study, from the numerical point of view, a type III thermoelastic model with double porosity. The thermomechanical problem is written as a linear system composed of hyperbolic partial differential equations for the displacements and the two porosities, and a parabolic partial differential equation for the thermal displacement. An existence and uniqueness result is recalled. Then, we perform its a priori error numerical analysis approximating the resulting variational problem by using the finite element method and the implicit Euler scheme. The linear convergence of the algorithm is derived under suitable additional regularity conditions. Finally, some numerical simulations are shown to demonstrate the accuracy of the approximations and the dependence of the solution on a coupling coefficient. Ministerio de Ciencia, Innovación y Universidades | Ref. PGC2018‐096696‐B‐I00 Ministerio de Economía y Competitividad | Ref. MTM2016‐74934‐P |
Databáze: | OpenAIRE |
Externí odkaz: |