Vertical liouville foliations on the big-tangent manifold of a finsler space

Autor: Cristian Ida, Paul Popescu
Rok vydání: 2017
Předmět:
Zdroj: Filomat. 31:1985-1994
ISSN: 2406-0933
0354-5180
DOI: 10.2298/fil1707985i
Popis: The present paper unifies some aspects concerning the vertical Liouville distributions on the tangent (cotangent) bundle of a Finsler (Cartan) space in the context of generalized geometry. More exactly, we consider the big-tangent manifold $\mathcal{T}M$ associated to a Finsler space $(M,F)$ and of its $\mathcal{L}$-dual which is a Cartan space $(M,K)$ and we define three Liouville distributions on $\mathcal{T}M$ which are integrable. We also find geometric properties of both leaves of Liouville distribution and the vertical distribution in our context.
Databáze: OpenAIRE