Vertical liouville foliations on the big-tangent manifold of a finsler space
Autor: | Cristian Ida, Paul Popescu |
---|---|
Rok vydání: | 2017 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics Integrable system General Mathematics Tangent Context (language use) Space (mathematics) Manifold Differential Geometry (math.DG) Bundle FOS: Mathematics Trigonometric functions Mathematics::Differential Geometry Mathematics::Symplectic Geometry Distribution (differential geometry) Mathematics |
Zdroj: | Filomat. 31:1985-1994 |
ISSN: | 2406-0933 0354-5180 |
DOI: | 10.2298/fil1707985i |
Popis: | The present paper unifies some aspects concerning the vertical Liouville distributions on the tangent (cotangent) bundle of a Finsler (Cartan) space in the context of generalized geometry. More exactly, we consider the big-tangent manifold $\mathcal{T}M$ associated to a Finsler space $(M,F)$ and of its $\mathcal{L}$-dual which is a Cartan space $(M,K)$ and we define three Liouville distributions on $\mathcal{T}M$ which are integrable. We also find geometric properties of both leaves of Liouville distribution and the vertical distribution in our context. |
Databáze: | OpenAIRE |
Externí odkaz: |