Autor: |
Hassan Emamirad, Idriss Laadnani |
Jazyk: |
angličtina |
Rok vydání: |
2006 |
Předmět: |
|
Zdroj: |
Adv. Differential Equations 11, no. 3 (2006), 241-257 |
Popis: |
In this paper we prove that the Dirichlet-to-Neumann semigroup $S(t)$ is an analytic compact Markov irreducible semigroup in $C(\partial \Omega)$ in any bounded smooth domain $\Omega$. By a generalization of the Lax semigroup, we construct an approximating family for $S(t)$. We prove some regularizing characters and compactness of this family. By using the ergodic properties of $S(t)$, we deduce its asymptotic behavior. At the end we conjecture some open problems. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|