From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442)

Autor: Ferro N., Fuhr N., Grefenstette G., Konstan J. A., Castells P., Daly E. M., Declerck T., Ekstrand M. D., Geyer W., Gonzalo J., Kuflik T., Lind'En K., Magnini B., Nie J. Y., Perego R., Shapira B., Soboroff I., Tintarev N., Verspoor K., Willemsen M. C., Zobel J.
Přispěvatelé: Human Technology Interaction
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Dagstuhl Manifestos, 7(1)
Dagstuhl Manifestos, 7(1), 96-139. Schloss Dagstuhl-Leibniz-Zentrum für Informatik
Dagstuhl manifestos 7 (2018): 96–139. doi:10.4230/DagMan.7.1.96
info:cnr-pdr/source/autori:Ferro N.; Fuhr N.; Grefenstette G.; Konstan J.A.; Castells P.; Daly E.M.; Declerck T.; Ekstrand M.D.; Geyer W.; Gonzalo J.; Kuflik T.; Lind'en K.; Magnini B.; Nie J.Y.; Perego R.; Shapira B.; Soboroff I.; Tintarev N.; Verspoor K.; Willemsen M.C.; Zobel J./titolo:From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442)/doi:10.4230%2FDagMan.7.1.96/rivista:Dagstuhl manifestos/anno:2018/pagina_da:96/pagina_a:139/intervallo_pagine:96–139/volume:7
ISSN: 2193-2433
DOI: 10.4230/DagMan.7.1.96
Popis: We describe the state-of-the-art in performance modeling and prediction for Information Retrieval (IR), Natural Language Processing (NLP) and Recommender Systems (RecSys) along with its shortcomings and strengths. We present a framework for further research, identifying five major problem areas: understanding measures, performance analysis, making underlying assumptions explicit, identifying application features determining performance, and the development of predic- tion models describing the relationship between assumptions, features and resulting performance
Databáze: OpenAIRE