A two-stage multi-criteria optimization method for service placement in decentralized edge micro-clouds

Autor: Felix Freitag, Mennan Selimi, Laura Calvet, Joan Manuel Marquès, Javier Panadero
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya. CNDS - Xarxes de Computadors i Sistemes Distribuïts
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Multi-objective optimization algorithms
Computació en núvol
Computer Networks and Communications
Computer science
Distributed computing
Service placement
Topology (electrical circuits)
02 engineering and technology
Community networks
Distributed systems
Set (abstract data type)
Ciutats digitals (Xarxes d'ordinadors)
0202 electrical engineering
electronic engineering
information engineering

Production (economics)
Cloud computing
Informàtica::Arquitectura de computadors::Arquitectures distribuïdes [Àrees temàtiques de la UPC]
Community network
Bandwidth (signal processing)
020206 networking & telecommunications
Micro-clouds
Hardware and Architecture
Electronic villages (Computer networks)
Key (cryptography)
020201 artificial intelligence & image processing
Enhanced Data Rates for GSM Evolution
Stage (hydrology)
Software
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: Community networks are becoming increasingly popular due to the growing demand for network connectivity in both rural and urban areas. Community networks are owned and managed at the edge by volunteers. Their irregular topology, the heterogeneity of resources and their unreliable behavior claim for advanced optimization methods to place services in the network. In particular, an efficient service placement method is key for the performance of these systems. This work presents the Multi-Criteria Optimal Placement method, a novel and fast two-stage multi-objective method to place services in decentralized community network edge micro-clouds. A comprehensive set of computational experiments is carried out using real traces of Guifi.net, which is the largest production community network worldwide. According to the results, the proposed method outperforms both the random placement method used currently in Guifi.net and the Bandwidth-aware Service Placement method, which provides the best known solutions in the literature, by a mean gap in bandwidth gain of about 53% and 10%, respectively, while it also reduces the number of resources used. This work has been partially supported by the Spanish Ministry of Science, Innovation and Universities (PGC2018-097599-B-100 and PID2019-106774RB-C21), and by the Spanish State Research Agency (AEI) under contracts PCI2019-111850-2 (DiPET CHIST-ERA) and PCI2019-111851-2 (LeadingEdge CHIST-ERA).
Databáze: OpenAIRE