Approaches in Bioinformatics for Monitoring Antihypertensive Therapies in Patients

Autor: Poluboiartsev, Igor O., Davydenko, Mariya V.
Jazyk: angličtina
Rok vydání: 2023
Předmět:
DOI: 10.5281/zenodo.8094206
Popis: This article presents a clinical case that explores the use of new approaches in bioinformatics for monitoring antihypertensive therapies in patients. The case describes a 58-year-old male with persistent hypertension and suboptimal response to antihypertensive medications. The physician orders a genetic test and a pharmacogenomic test to identify potential genetic variants and drug response profiles that may explain the patient's condition. Based on these findings, the physician switches the patient's antihypertensive therapy and schedules a follow-up appointment to monitor his blood pressure. The case highlights the potential of bioinformatics to personalize antihypertensive therapy and improve patient outcomes while minimizing the risk of adverse drug reactions. This article is relevant to healthcare professionals, researchers, and policymakers interested in the application of bioinformatics in clinical practice. Aim. The aim of this article is to explore the use of new approaches in bioinformatics for monitoring antihypertensive therapies in patients. Specifically, we aim to demonstrate how genetic and pharmacogenomic testing can provide valuable information for personalizing antihypertensive therapy and improving blood pressure control while minimizing the risk of adverse drug reactions. This article highlights the potential of bioinformatics to optimize healthcare resources and improve patient outcomes in the management of hypertension.
{"references":["1.\tHassoun PM, Taichman DB. Pulmonary arterial hypertension. N. Engl. J. Med. 2021; 385:2361–2376. doi: 10.1056/NEJMra2000348. [PubMed] [CrossRef] [Google Scholar]","2.\tThenappan T, Ormiston ML, Ryan JJ, Archer SL. Pulmonary arterial hypertension: Pathogenesis and clinical management. BMJ. 2018;360:j5492. doi: 10.1136/bmj.j5492. [PMC free article] [PubMed] [CrossRef] [Google Scholar]","3.\tLau EMT, David EG, Celermajer S, Humbert M. Epidemiology and treatment of pulmonary arterial hypertension. Nat. Rev. Cardiol. 2017;20:14. [PubMed] [Google Scholar]","4.\tMaron BA, Abman SH, Elliott CG, et al. Pulmonary arterial hypertension: Diagnosis, treatment, and novel advances. Am. J. Respir. Crit. Care Med. 2021;203:1472–1487. doi: 10.1164/rccm.202012-4317SO. [PMC free article] [PubMed] [CrossRef] [Google Scholar]","5.\tBurki TK. Pharmacotherapy for pulmonary arterial hypertension. Lancet Respir. Med. 2020;8:25. doi: 10.1016/S2213-2600(19)30262-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]","6.\tStearman RS, Bui QM, Speyer G, et al. Systems analysis of the human pulmonary arterial hypertension lung transcriptome. Am. J. Respir. Cell Mol. Biol. 2019;60:637–649. doi: 10.1165/rcmb.2018-0368OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]","7.\tSaygin D, Tabib T, Bittar HET, et al. Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension. Pulmonary Circ. 2020;10:1–15. doi: 10.1177/2045894020908782. [PMC free article] [PubMed] [CrossRef] [Google Scholar]","8.\tRahman MH, Rana HK, Peng S, et al. Bioinformatics and machine learning methodologies to identify the effects of central nervous system disorders on glioblastoma progression. Brief Bioinform. 2021;22:25. [PubMed] [Google Scholar]","9.\tRahman MH, Peng S, Hu X, et al. A Network-based bioinformatics approach to identify molecular biomarkers for type 2 diabetes that are linked to the progression of neurological diseases. Int. J. Environ. Res. Public Health. 2020;17:25. [PMC free article] [PubMed] [Google Scholar]","10.\tKanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545–D551. doi: 10.1093/nar/gkaa970. [PMC free article] [PubMed] [CrossRef] [Google Scholar]","11.\tGoto MKAS. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.380. [PMC free article] [PubMed] [CrossRef] [Google Scholar]","12.\tKanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–1951. doi: 10.1002/pro.3715. [PMC free article] [PubMed] [CrossRef] [Google Scholar]","13.\tXiaomei YCW, Yicheng L, Peng Z. Identification of crucial hub genes and differential T cell infiltration in idiopathic pulmonary arterial hypertension using bioinformatics strategies. Front. Mol. Biosci. 2022;9:25. [PMC free article] [PubMed] [Google Scholar]","14.\tRosenzweig EB, Abman SH, Adatia I, et al. Paediatric pulmonary arterial hypertension: Updates on definition, classification, diagnostics and management. Eur. Respir. J. 2019;53:25. [PMC free article] [PubMed] [Google Scholar]","15.\tHoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and diagnosis of pulmonary hypertension. J. Am. Coll. Cardiol. 2013;62:D42–50. doi: 10.1016/j.jacc.2013.10.032. [PubMed] [CrossRef] [Google Scholar]","16.\tGalie N, Channick RN, Frantz RP, et al. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur. Respir. J. 2019;53:25. [PMC free article] [PubMed] [Google Scholar]","17.\tMainguy V, Maltais F, Saey D, et al. Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax. 2010;65:113–117. doi: 10.1136/thx.2009.117168. [PubMed] [CrossRef] [Google Scholar]","18.\tUlrich S, Keusch S, Hildenbrand FF, et al. Effect of nocturnal oxygen and acetazolamide on exercise performance in patients with pre-capillary pulmonary hypertension and sleep-disturbed breathing: Randomized, double-blind, cross-over trial. Eur. Heart J. 2015;36:615–623. doi: 10.1093/eurheartj/eht540. [PubMed] [CrossRef] [Google Scholar]","19.\tOlsson KM, Delcroix M, Ghofrani HA, et al. Anticoagulation and survival in pulmonary arterial hypertension: Results from the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) Circulation. 2014;129:57–65. doi: 10.1161/CIRCULATIONAHA.113.004526. [PubMed] [CrossRef] [Google Scholar]","20.\tRieg AD, Bunting NA, Cranen C, et al. Tyrosine kinase inhibitors relax pulmonary arteries in human and murine precision-cut lung slices. Respir. Res. 2019;20:111. doi: 10.1186/s12931-019-1074-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]"]}
Databáze: OpenAIRE