Weak endpoint bounds for matrix weights
Autor: | Israel P. Rivera-Ríos, Joshua Isralowitz, Kabe Moen, David Cruz-Uribe, Sandra Pott |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Class (set theory)
Matrix (mathematics) Mathematics::Functional Analysis Mathematics - Classical Analysis and ODEs General Mathematics Scalar (mathematics) Classical Analysis and ODEs (math.CA) FOS: Mathematics Mathematics::Analysis of PDEs Mathematics::Classical Analysis and ODEs Maximal operator Applied mathematics Mathematics |
Popis: | We prove quantitative, matrix weighted, endpoint estimates for the matrix weighted Hardy-Littlewood maximal operator, Calderon-Zygmund operators, and commutators of CZOs with scalar BMO functions, when the matrix weight is in the class A1 introduced by M. Frazier and S. Roudenko. Even in the scalar case, our estimates are sharper than the results implicit in the literature. |
Databáze: | OpenAIRE |
Externí odkaz: |