Parallelized Monte-Carlo using graphics processing units to model cylindrical diffusers used in photodynamic therapy: From implementation to validation

Autor: Clément Dupont, Serge Mordon, Maximilien Vermandel, Gregory Baert
Přispěvatelé: Thérapies Laser Assistées par l'Image pour l'Oncologie - U 1189 (ONCO-THAI), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Université Lille 2 - Faculté de Médecine, Therapies Interventionnelles Assistees Par l'Image et la Simulation, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Droit et Santé, Faculté de Médecine Henri Warembourg - Université de Lille, Therapies Interventionnelles Assistees Par l'Image et la Simulation - U 703 (Thiais), MORDON, SERGE
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Optical fiber
Computer science
[SDV]Life Sciences [q-bio]
030303 biophysics
Monte Carlo method
Physics::Medical Physics
Biophysics
graphics processing unit algorithm
Context (language use)
[SDV.CAN]Life Sciences [q-bio]/Cancer
Dermatology
cylindrical diffuser
Imaging phantom
law.invention
Computational science
Diffusion
030207 dermatology & venereal diseases
03 medical and health sciences
Acceleration
0302 clinical medicine
[SDV.CAN] Life Sciences [q-bio]/Cancer
law
Computer Graphics
Dosimetry
Pharmacology (medical)
Graphics
Radiometry
Radiation treatment planning
[SDV.IB] Life Sciences [q-bio]/Bioengineering
0303 health sciences
dosimetry
Monte-Carlo modeling
3. Good health
[SDV] Life Sciences [q-bio]
Photochemotherapy
Oncology
photodynamic therapy
[SDV.IB]Life Sciences [q-bio]/Bioengineering
Monte Carlo Method
Algorithms
Zdroj: Photodiagnosis and Photodynamic Therapy
Photodiagnosis and Photodynamic Therapy, Elsevier, 2019, ⟨10.1016/j.pdpdt.2019.04.020⟩
Photodiagnosis and Photodynamic Therapy, 2019, ⟨10.1016/j.pdpdt.2019.04.020⟩
ISSN: 1572-1000
DOI: 10.1016/j.pdpdt.2019.04.020⟩
Popis: International audience; The Monte-Carlo method is the standard method for computing the dosimetry of both ionizing and non-ionizing radiation. Because this technique is highly time-consuming in conventional implementations, several improvements have recently been developed to speed-up simulations. Among the improvements, the use of graphics processing units (GPU) to parallelize algorithms provides a cost-efficient solution to accelerate the Monte-Carlo method. Parallel implementation of Monte-Carlo using GPU technology is described in the context of photodynamic therapy (PDT) dosimetry. This algorithm has been optimized to compute light emitted from optical fibers with cylindrical diffusers that are used in interstitial PDT applications. A comparison of the experimental measurements used to assess the results of the Monte-Carlo method is detailed. Illumination profiles of several commercially available diffusers are measured using an optical phantom that mimics the optical properties of the brain. Additionally, this Monte-Carlo method is compared to ex-vivo measurements made by a device dedicated to intraoperative PDT treatment of brain tumors. The results of the GPU Monte-Carlo validation are in accordance with the recommendations of the American Association of Physicists in Medicine. The acceleration obtained with the GPU implementation is in accordance with the literature and is sufficiently fast to be integrated in a treatment planning system dedicated to planning routine clinical interstitial PDT treatments.
Databáze: OpenAIRE