The Berkovich realization for rigid analytic motives
Autor: | Alberto Vezzani |
---|---|
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Algebra and Number Theory Functor 010102 general mathematics Étale cohomology Field (mathematics) Topological space 16. Peace & justice 01 natural sciences Mathematics - Algebraic Geometry Mathematics::Group Theory Mathematics::Algebraic Geometry Mathematics::K-Theory and Homology 0103 physical sciences FOS: Mathematics Algebraic Topology (math.AT) Mathematics - Algebraic Topology 010307 mathematical physics 0101 mathematics Variety (universal algebra) Realization (systems) Algebraic Geometry (math.AG) Quotient Mathematics |
DOI: | 10.48550/arxiv.1708.04284 |
Popis: | We prove that the functor associating to a rigid analytic variety the singular complex of the underlying Berkovich topological space is motivic, and defines the maximal Artin quotient of a motive. We use this to generalize Berkovich's results on the weight-zero part of the \'etale cohomology of a variety defined over a non-archimedean valued field. Comment: Minor changes, accepted for publication in J. Algebra, 19 pages |
Databáze: | OpenAIRE |
Externí odkaz: |