The Berkovich realization for rigid analytic motives

Autor: Alberto Vezzani
Rok vydání: 2017
Předmět:
DOI: 10.48550/arxiv.1708.04284
Popis: We prove that the functor associating to a rigid analytic variety the singular complex of the underlying Berkovich topological space is motivic, and defines the maximal Artin quotient of a motive. We use this to generalize Berkovich's results on the weight-zero part of the \'etale cohomology of a variety defined over a non-archimedean valued field.
Comment: Minor changes, accepted for publication in J. Algebra, 19 pages
Databáze: OpenAIRE