Evaluation of three different filters and two methods for recovering viruses from drinking water

Autor: Catherine Hennechart-Collette, Sylvie Perelle, Sandra Martin-Latil, Audrey Fraisse, Océane Dehan
Přispěvatelé: Laboratoire de sécurité des aliments de Maisons-Alfort (LSAl), Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)
Rok vydání: 2020
Předmět:
Zdroj: Journal of Virological Methods
Journal of Virological Methods, Elsevier, 2020, 284, pp.113939. ⟨10.1016/j.jviromet.2020.113939⟩
ISSN: 0166-0934
DOI: 10.1016/j.jviromet.2020.113939
Popis: International audience; Among the enteric viruses implicated in waterborne outbreaks, human norovirus and hepatitis A virus (HAV) are a serious public health issue. Most foodborne viruses are difficult or currently unlikely to cultivate. Because of the lack of a cell culture method, real-time reverse transcriptase PCR is commonly used for the detection of norovirus in foodstuffs and environmental samples. Due to low infectious doses in humans and low virus concentration in water sample, filter adsorption methods were used for concentrating viruses from water. The ISO (Anonymous, ISO 15216-1, 2017) describes standardized molecular methods for detecting HAV and norovirus in bottled water. This method includes a two-step procedure: concentrating the virus using a microporous electropositive filter (47 mm diameter, 0.45 μm pore size) then molecular detection. The Zetapor filter, which had a charged membrane with a pore size of 0.45 μm, was commonly used in the past to concentrate viruses from water or from salad leaves following virus elution. But, unfortunately, the Zetapor filter is no longer marketed and it is therefore necessary to assess an alternative filter. The aim of this study was to compare the ability of two electropositive filters with a pore size of 0.45 μm or 0.22 μm and one uncharged filter (0.45 μm) to recover norovirus and HAV from two different types of drinking water (bottled water and tap water) with the adsorption-elution method proposed by ISO (Anonymous, ISO 15216-1, 2017) (method A) and with direct viral extraction using filters (method B). The mean extraction yields for norovirus and HAV calculated with RNA extracts ranged from 0.2 % - 4.81 % with method A and from 5.05 % - 53.58 % with method B, and did not differ significantly between the two types of drinking water tested. For method B, the mean extraction yields for HAV and norovirus were evaluated according to results from the three filters used. The recovery rate of HAV and norovirus ranged between 3.47 % and 62.41 % with the 0.45 μm electropositive filter and were higher than the other filters. The 0.45 μm electropositive filter could be used to concentrate viruses for routine viral monitoring of drinking water for researchers who want to adopt the method in their lab routine.
Databáze: OpenAIRE