Inhibition of atherosclerosis in apolipoprotein-E-deficient mice following muscle transduction with adeno-associated virus vectors encoding human apolipoprotein-E

Autor: Zahra Mohri, Julian D. Harris, Silke Schepelmann, David G. Hassall, Ian R. Graham, A.K. Stannard, George Dickson, Hill, James S. Owen, Takis Athanasopoulos
Rok vydání: 2002
Předmět:
Zdroj: Gene Therapy. 9:21-29
ISSN: 1476-5462
0969-7128
Popis: Apolipoprotein E (apoE) is a multifunctional plasma glycoprotein involved in lipoprotein metabolism and a range of cell signalling phenomena. ApoE-deficient (apoE(-/-)) mice exhibit severe hypercholesterolaemia and are an excellent model of human atherosclerosis. ApoE somatic gene transfer and bone marrow transplantation in apoE(-/-) mice results in reversal of hypercholesterolaemia, inhibition of atherogenesis and regression of atherosclerotic plaque density. Replication defective adeno-associated virus vectors (rAAVs) are an attractive system currently in clinical trial for muscle-based heterologous gene therapy to express secreted recombinant plasma proteins. Here we have applied rAAV transduction of skeletal muscle to express wild-type (epsilon3) and a defective receptor-binding mutant (epsilon2) human apoE transgene in apoE(-/-) mice. In treated animals, apoE mRNA was present in transduced muscles and, although plasma levels of recombinant apoE fell below the detection levels of our ELISA (ie10 ng/ml), circulating antibodies to human apoE and rAAV were induced. Up to 3 months after a single administration of rAAV/apoE3, a significant reduction in atherosclerotic plaque density in aortas of treated animals was observed (approximately 30%), indicating that low-level rAAV-mediated apoE3 expression from skeletal muscle can retard atherosclerotic progression in this well-defined genetic model.
Databáze: OpenAIRE