1-Subdivisions, the Fractional Chromatic Number and the Hall Ratio

Autor: Zdenĕk Dvořák, Hehui Wu, Patrice Ossona de Mendez
Přispěvatelé: Centre d'Analyse et de Mathématique sociales (CAMS), École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Combinatorica
Combinatorica, Springer Verlag, 2020, ⟨10.1007/s00493-020-4223-9⟩
ISSN: 0209-9683
1439-6912
DOI: 10.1007/s00493-020-4223-9⟩
Popis: The Hall ratio of a graph G is the maximum of |V(H)|/α(H) over all subgraphs H of G. It is easy to see that the Hall ratio of a graph is a lower bound for the fractional chromatic number. It has been asked whether conversely, the fractional chromatic number is upper bounded by a function of the Hall ratio. We answer this question in negative, by showing two results of independent interest regarding 1-subdivisions (the 1-subdivision of a graph is obtained by subdividing each edge exactly once). We also discuss the consequences of these results in the context of graph classes with bounded expansion.
Databáze: OpenAIRE