Geodesic Vector Fields on a Riemannian Manifold

Autor: Patrik Peska, Sharief Deshmukh, Nasser Bin Turki
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Mathematics, Vol 8, Iss 1, p 137 (2020)
Mathematics
Volume 8
Issue 1
ISSN: 2227-7390
Popis: A unit geodesic vector field on a Riemannian manifold is a vector field whose integral curves are geodesics, or in other worlds have zero acceleration. A geodesic vector field on a Riemannian manifold is a smooth vector field with acceleration of each of its integral curves is proportional to velocity. In this paper, we show that the presence of a geodesic vector field on a Riemannian manifold influences its geometry. We find characterizations of n-spheres as well as Euclidean spaces using geodesic vector fields.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje