Beyond Biodegradability of Poly(lactic acid): Physical and Chemical Stability in Humid Environments

Autor: Claire-Hélène Brachais, Orla Whyte, Eva Marcuzzo, Francesca Piasente, Dominique Champion, Thomas Karbowiak, Frédéric Debeaufort, Alessandro Sensidoni, Jeancarlo R. Rocca-Smith
Přispěvatelé: Procédés Alimentaires et Microbiologiques ( PAM ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Dipartimento di Scienze AgroAlimentari, Ambientali e Animali - [Udine] ( DI4A ), Università degli Studi di Udine - University of Udine [Italie], Institut de Chimie Moléculaire de l'Université de Bourgogne [Dijon] ( ICMUB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Taghleef Industries, Département Génie biologique [IUT de Dijon/Auxerre - université de Bourgogne], Institut Universitaire de Technologie - IUT Dijon/Auxerre, Université de Bourgogne ( UB ) -Université de Bourgogne ( UB ), European Social Fund-Friuli Venezia Giulia Region-Operational Program [FP1340303009], University Italo-Francese for mobility (Bando Vinci 2015 Cap II) [C2-64 ], RMB plateau of UMR PAM for thermal analyses, ICMUB research unit for SEC analyses, Procédés Alimentaires et Microbiologiques [Dijon] (PAM), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Dipartimento di Scienze AgroAlimentari, Ambientali e Animali - [Udine] (DI4A), Institut de Chimie Moléculaire de l'Université de Bourgogne [Dijon] (ICMUB), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-Institut de Chimie du CNRS (INC), Institut Universitaire de Technologie - Dijon/Auxerre (IUT Dijon), Université de Bourgogne (UB)-Université de Bourgogne (UB), Procédés Alimentaires et Microbiologiques (PAM), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Université de Bourgogne (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2017
Předmět:
Aging
Hydrolytic degradation
Phosphate-buffered solution
General Chemical Engineering
Amorphous fractions
02 engineering and technology
Polylactide
010402 general chemistry
01 natural sciences
Bioplastic
Hydrolysis
chemistry.chemical_compound
Glass-transition
[SDV.IDA]Life Sciences [q-bio]/Food engineering
Environmental Chemistry
Organic chemistry
Relative humidity
Relative-humidity
State of water
Poly(l-lactic acid)
Renewable Energy
Sustainability and the Environment

Chemistry
Amorphous phase
[ SDV.IDA ] Life Sciences [q-bio]/Food engineering
technology
industry
and agriculture

General Chemistry
Biodegradation
equipment and supplies
021001 nanoscience & nanotechnology
0104 chemical sciences
Lactic acid
Lactide copolymers
PLA
Degradation (geology)
Chemical stability
In-vitro degradation
0210 nano-technology
Glass transition
Zdroj: ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering, American Chemical Society, 2017, 5 (3), pp.2751-2762. 〈10.1021/acssuschemeng.6b03088〉
ACS Sustainable Chemistry & Engineering, American Chemical Society, 2017, 5 (3), pp.2751-2762. ⟨10.1021/acssuschemeng.6b03088⟩
ISSN: 2168-0485
DOI: 10.1021/acssuschemeng.6b03088
Popis: International audience; Poly(lactic acid) (PLA) is the most traded biodegradable and biobased material. It is largely used as ecofriendly substitute of conventional plastics. Nevertheless, one of the main limiting factors is its water sensitivity. PLA reacts with water and is hydrolyzed during time, which determines its performance. Limited information related to the hydrolysis mechanism driven by water in vapor state is available in scientific literature. Literature is mainly focused on the effects of water in liquid state. This lack of information is of significant importance, since PLA interacts with water in both phases. This work was aimed to give a full depiction of the chemical and physical changes of PLA in a large range of relative humidity environments (from 50 to 100% RH) and in contact with liquid water. This research clearly showed that the stability of PLA was influenced not only by the chemical potential of water molecules, but also by their physical state due to a different behavior of degradation products. From a practical point of view, the findings of this study can be used as strong scientific basis for giving recommendations about the use of this material in its applications as packaging or mulch films.
Databáze: OpenAIRE