Semiarcs with long secants

Autor: Bence Csajbók
Rok vydání: 2013
Předmět:
Zdroj: Scopus-Elsevier
ISSN: 1571-0653
Popis: In a projective plane $\Pi_q$ of order $q$, a non-empty point set ${\cal S}_t$ is a $t$-semiarc if the number of tangent lines to ${\cal S}_t$ at each of its points is $t$. If ${\cal S}_t$ is a $t$-semiarc in $\Pi_q$, $t1$, then $t$-semiarcs with $q+1-t$ collinear points exist only if $t\geq \sqrt{q-1}$. In $\mathrm{PG}(2,q)$ we prove the lower bound $t\geq(q-1)/2$, with equality only if ${\cal S}_t$ is a blocking set of R\'edei type of size $3(q+1)/2$. We call the symmetric difference of two lines, with $t$ further points removed from each line, a $V_t$-configuration. We give conditions ensuring a $t$-semiarc to contain a $V_t$-configuration and give the complete characterization of such $t$-semiarcs in $\mathrm{PG}(2,q)$.
Comment: 12 pages
Databáze: OpenAIRE