A Mechanically Tunable Quantum Dot in a Graphene Break Junction

Autor: Matthijs D. Hermans, Kenji Watanabe, Sabina Caneva, Martin Lee, Takashi Taniguchi, Amador García-Fuente, Herre S. J. van der Zant, Pascal Gehring, Jaime Ferrer, Cees Dekker
Přispěvatelé: UCL - SST/IMCN/NAPS - Nanoscopic Physics, Ministry of Education, Culture, Sports, Science and Technology (Japan), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), European Commission, European Research Council
Rok vydání: 2020
Předmět:
Zdroj: Nano Letters
Nano Letters: a journal dedicated to nanoscience and nanotechnology, 20(7)
Scopus
RUO. Repositorio Institucional de la Universidad de Oviedo
Universidad de las Islas Baleares
RUO: Repositorio Institucional de la Universidad de Oviedo
Universidad de Oviedo (UNIOVI)
Nano Letters : a journal dedicated to nanoscience and nanotechnology, Vol. 20, no.np, p. 4924-4931 (2020)
Digital.CSIC. Repositorio Institucional del CSIC
instname
ISSN: 1530-6992
1530-6984
Popis: Graphene quantum dots (QDs) are intensively studied as platforms for the next generation of quantum electronic devices. Fine tuning of the transport properties in monolayer graphene QDs, in particular with respect to the independent modulation of the tunnel barrier transparencies, remains challenging and is typically addressed using electrostatic gating. We investigate charge transport in back-gated graphene mechanical break junctions and reveal Coulomb blockade physics characteristic of a single, high-quality QD when a nanogap is opened in a graphene constriction. By mechanically controlling the distance across the newly formed graphene nanogap, we achieve reversible tunability of the tunnel coupling to the drain electrode by 5 orders of magnitude, while keeping the source-QD tunnel coupling constant. The break junction device can therefore become a powerful platform to study the physical parameters that are crucial to the development of future graphene-based devices, including energy converters and quantum calorimeters.
S.C. acknowledges a Marie Skłodowska-Curie Individual Fellowship under grant BioGraphING (ID: 798851) and P.G. acknowledges a Marie Skłodowska-Curie Individual Fellowship under grant TherSpinMol (ID: 748642) from the European Union’s Horizon 2020 research and innovation programme. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and the CREST (JPMJCR15F3), JST. This work was supported by the Graphene Flagship (a European Union’s Horizon 2020 research and innovation programme under grant agreement no. 649953), the Marie Curie ITN MOLESCO, an ERC advanced grant (Mols@Mols no. 240299), and a Spanish MCIU/AEI/FEDER project (PGC2018-094783).
Databáze: OpenAIRE