Rigidity of critical circle maps
Autor: | Marco Martens, Pablo Guarino, Welington de Melo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
37E10 Mathematics::Dynamical Systems General Mathematics Rigidity (psychology) Dynamical Systems (math.DS) 01 natural sciences critical circle maps 010305 fluids & plasmas Irrational rotation renormalization Set (abstract data type) Renormalization Conjugacy class smooth rigidity 0103 physical sciences FOS: Mathematics Mathematics - Dynamical Systems 0101 mathematics Mathematics 37E20 Lebesgue measure 010102 general mathematics commuting pairs Diffeomorphism Rotation (mathematics) |
Zdroj: | Duke Math. J. 167, no. 11 (2018), 2125-2188 |
Popis: | We prove that any two $C^4$ critical circle maps with the same irrational rotation number and the same odd criticality are conjugate to each other by a $C^1$ circle diffeomorphism. The conjugacy is $C^{1+\alpha}$ for Lebesgue almost every rotation number. Comment: 46 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |