Isogeometric collocation methods for the Reissner-Mindlin plate problem
Autor: | Alessandro Reali, Carlo Lovadina, Josef Kiendl, L. Beirão da Veiga, Ferdinando Auricchio |
---|---|
Přispěvatelé: | Kiendl, J, Auricchio, F, BEIRAO DA VEIGA, L, Lovadina, C, Reali, A |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Collocation methods
Mechanical Engineering Computational Mechanics General Physics and Astronomy Isogeometric analysis Computer Science::Numerical Analysis Mathematics::Numerical Analysis Computer Science Applications NURBS Numerical approximation Mechanics of Materials Computer Science::Mathematical Software Calculus Locking-free methods Applied mathematics Isogeometric analysis Reissner Mindlin plates Numerical tests Reissner-Mindlin plate Galerkin method Mathematics |
Zdroj: | Computer methods in applied mechanics and engineering 284 (2015): 489–507. doi:10.1016/j.cma.2014.09.011 info:cnr-pdr/source/autori:J. Kiendl, F. Auricchio, L. Beirao da Veiga, C. Lovadina, and A. Reali/titolo:Isogeometric collocation methods for the Reissner-Mindlin plate problem/doi:10.1016%2Fj.cma.2014.09.011/rivista:Computer methods in applied mechanics and engineering/anno:2015/pagina_da:489/pagina_a:507/intervallo_pagine:489–507/volume:284 |
DOI: | 10.1016/j.cma.2014.09.011 |
Popis: | Within the general framework of isogeometric methods, collocation schemes have been recently proposed as a viable and promising low-cost alternative to standard isogeometric Galerkin approaches. In this paper, isogeometric collocation methods for the numerical approximation of Reissner–Mindlin plate problems are proposed for the first time. Locking-free primal and mixed formulations are herein considered, and the potential of isogeometric collocation as a geometrically flexible and computationally efficient simulation tool for shear deformable plates is shown through the solution of several numerical tests. |
Databáze: | OpenAIRE |
Externí odkaz: |