Isogeometric collocation methods for the Reissner-Mindlin plate problem

Autor: Alessandro Reali, Carlo Lovadina, Josef Kiendl, L. Beirão da Veiga, Ferdinando Auricchio
Přispěvatelé: Kiendl, J, Auricchio, F, BEIRAO DA VEIGA, L, Lovadina, C, Reali, A
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Computer methods in applied mechanics and engineering 284 (2015): 489–507. doi:10.1016/j.cma.2014.09.011
info:cnr-pdr/source/autori:J. Kiendl, F. Auricchio, L. Beirao da Veiga, C. Lovadina, and A. Reali/titolo:Isogeometric collocation methods for the Reissner-Mindlin plate problem/doi:10.1016%2Fj.cma.2014.09.011/rivista:Computer methods in applied mechanics and engineering/anno:2015/pagina_da:489/pagina_a:507/intervallo_pagine:489–507/volume:284
DOI: 10.1016/j.cma.2014.09.011
Popis: Within the general framework of isogeometric methods, collocation schemes have been recently proposed as a viable and promising low-cost alternative to standard isogeometric Galerkin approaches. In this paper, isogeometric collocation methods for the numerical approximation of Reissner–Mindlin plate problems are proposed for the first time. Locking-free primal and mixed formulations are herein considered, and the potential of isogeometric collocation as a geometrically flexible and computationally efficient simulation tool for shear deformable plates is shown through the solution of several numerical tests.
Databáze: OpenAIRE