On a class of two-dimensional singular elliptic problems

Autor: Paolo Caldiroli, Roberta Musina
Rok vydání: 2001
Předmět:
Zdroj: Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 131:479-497
ISSN: 1473-7124
0308-2105
DOI: 10.1017/s0308210501000221
Popis: We consider Dirichlet problems of the form −|x|αΔu = λu + g(u) in Ω, u = 0 on ∂Ω, where α, λ ∈ R, g ∈ C(R) is a superlinear and subcritical function, and Ω is a domain in R2. We study the existence of positive solutions with respect to the values of the parameters α and λ, and according that 0 ∈ Ω or 0 ∈ ∂Ω, and that Ω is an exterior domain or not.
Databáze: OpenAIRE