On a class of two-dimensional singular elliptic problems
Autor: | Paolo Caldiroli, Roberta Musina |
---|---|
Rok vydání: | 2001 |
Předmět: |
degenerate and singular elliptic equations
Dirichlet problems General Mathematics Elliptic function variational methods Sturm-Liouville operator Hardy inequality existence of positive solutions Domain (mathematical analysis) Jacobi elliptic functions Combinatorics Semi-elliptic operator Elliptic operator Dirichlet problems existence of positive solutions Modular elliptic curve Singular solution Schoof's algorithm Mathematics |
Zdroj: | Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 131:479-497 |
ISSN: | 1473-7124 0308-2105 |
DOI: | 10.1017/s0308210501000221 |
Popis: | We consider Dirichlet problems of the form −|x|αΔu = λu + g(u) in Ω, u = 0 on ∂Ω, where α, λ ∈ R, g ∈ C(R) is a superlinear and subcritical function, and Ω is a domain in R2. We study the existence of positive solutions with respect to the values of the parameters α and λ, and according that 0 ∈ Ω or 0 ∈ ∂Ω, and that Ω is an exterior domain or not. |
Databáze: | OpenAIRE |
Externí odkaz: |