Microtubule-Mediated Wall Anisotropy Contributes to Leaf Blade Flattening
Autor: | Fei Du, Yuling Jiao, Wen-Qian Chen, Christophe Godin, Lüwen Zhou, Arun Sampathkumar, Shiliang Feng, Qingqing Wang, René Schneider, Hadrien Oliveri, Jan Traas, Shouqin Lü, Feng Zhao, Mian Long, Olivier Ali |
---|---|
Přispěvatelé: | Reproduction et développement des plantes (RDP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institute of Genetics and Developmental Biology [Beijing], Chinese Academy of Sciences [Changchun Branch] (CAS), Ningbo University (NBU), Simulation et Analyse de la morphogenèse in siliCo (MOSAIC), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), University of Chinese Academy of Sciences [Beijing] (UCAS), Max Planck Institute of Molecular Plant Physiology (MPI-MP), Max-Planck-Gesellschaft, École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Simulation et Analyse de la morphogenèse in siliCo (MOSAIC), Inria Lyon |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0301 basic medicine
Flatness (systems theory) Arabidopsis Plant Development 3D mechanical modeling Biology Microtubules Article General Biochemistry Genetics and Molecular Biology Flattening Feedback Cell wall 03 medical and health sciences 0302 clinical medicine Solanum lycopersicum Cell Wall Gene Expression Regulation Plant Microtubule Morphogenesis Anisotropy Cytoskeleton [SDV.BDD]Life Sciences [q-bio]/Development Biology Body Patterning anisotropic growth Polarity (international relations) fungi food and beverages cytoskeleton [SDV.BDD.MOR]Life Sciences [q-bio]/Development Biology/Morphogenesis organ polarity Organ Size [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation Plant Leaves 030104 developmental biology leaf flattening Biophysics mechanical feedback Stress Mechanical General Agricultural and Biological Sciences Cortical microtubule 030217 neurology & neurosurgery |
Zdroj: | Current Biology-CB Current Biology-CB, Elsevier, 2020, 30 (20), pp.3972. ⟨10.1016/j.cub.2020.07.076⟩ Current Biology-CB, 2020, 30 (20), pp.3972. ⟨10.1016/j.cub.2020.07.076⟩ Current Biology |
ISSN: | 0960-9822 1879-0445 |
Popis: | Summary Plant organs can adopt a wide range of shapes, resulting from highly directional cell growth and divisions. We focus here on leaves and leaf-like organs in Arabidopsis and tomato, characterized by the formation of thin, flat laminae. Combining experimental approaches with 3D mechanical modeling, we provide evidence that leaf shape depends on cortical microtubule mediated cellulose deposition along the main predicted stress orientations, in particular, along the adaxial-abaxial axis in internal cell walls. This behavior can be explained by a mechanical feedback and has the potential to sustain and even amplify a preexisting degree of flatness, which in turn depends on genes involved in the control of organ polarity and leaf margin formation. Graphical Abstract Highlights • Microtubules and cellulose microfibrils align along the ad-abaxial direction • Microtubule-mediated cell growth anisotropy contributes to leaf flattening • Mechanical feedback accounts for microtubule alignments in the ad-abaxial direction • Final organ shape depends on the degree of initial asymmetry of primordia How do leaves maintain highly directional cell growth and divisions to form thin, flat laminae? Zhao et al. show that microtubules and cellulose microfibrils align along the main stress direction of internal walls to mediate anisotropic growth. Microtubule-mediated mechanical feedback amplifies an initial asymmetry and maintains directional growth. |
Databáze: | OpenAIRE |
Externí odkaz: |