Microtubule-Mediated Wall Anisotropy Contributes to Leaf Blade Flattening

Autor: Fei Du, Yuling Jiao, Wen-Qian Chen, Christophe Godin, Lüwen Zhou, Arun Sampathkumar, Shiliang Feng, Qingqing Wang, René Schneider, Hadrien Oliveri, Jan Traas, Shouqin Lü, Feng Zhao, Mian Long, Olivier Ali
Přispěvatelé: Reproduction et développement des plantes (RDP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institute of Genetics and Developmental Biology [Beijing], Chinese Academy of Sciences [Changchun Branch] (CAS), Ningbo University (NBU), Simulation et Analyse de la morphogenèse in siliCo (MOSAIC), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), University of Chinese Academy of Sciences [Beijing] (UCAS), Max Planck Institute of Molecular Plant Physiology (MPI-MP), Max-Planck-Gesellschaft, École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Simulation et Analyse de la morphogenèse in siliCo (MOSAIC), Inria Lyon
Jazyk: angličtina
Rok vydání: 2020
Předmět:
0301 basic medicine
Flatness (systems theory)
Arabidopsis
Plant Development
3D mechanical modeling
Biology
Microtubules
Article
General Biochemistry
Genetics and Molecular Biology

Flattening
Feedback
Cell wall
03 medical and health sciences
0302 clinical medicine
Solanum lycopersicum
Cell Wall
Gene Expression Regulation
Plant

Microtubule
Morphogenesis
Anisotropy
Cytoskeleton
[SDV.BDD]Life Sciences [q-bio]/Development Biology
Body Patterning
anisotropic growth
Polarity (international relations)
fungi
food and beverages
cytoskeleton
[SDV.BDD.MOR]Life Sciences [q-bio]/Development Biology/Morphogenesis
organ polarity
Organ Size
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
Plant Leaves
030104 developmental biology
leaf flattening
Biophysics
mechanical feedback
Stress
Mechanical

General Agricultural and Biological Sciences
Cortical microtubule
030217 neurology & neurosurgery
Zdroj: Current Biology-CB
Current Biology-CB, Elsevier, 2020, 30 (20), pp.3972. ⟨10.1016/j.cub.2020.07.076⟩
Current Biology-CB, 2020, 30 (20), pp.3972. ⟨10.1016/j.cub.2020.07.076⟩
Current Biology
ISSN: 0960-9822
1879-0445
Popis: Summary Plant organs can adopt a wide range of shapes, resulting from highly directional cell growth and divisions. We focus here on leaves and leaf-like organs in Arabidopsis and tomato, characterized by the formation of thin, flat laminae. Combining experimental approaches with 3D mechanical modeling, we provide evidence that leaf shape depends on cortical microtubule mediated cellulose deposition along the main predicted stress orientations, in particular, along the adaxial-abaxial axis in internal cell walls. This behavior can be explained by a mechanical feedback and has the potential to sustain and even amplify a preexisting degree of flatness, which in turn depends on genes involved in the control of organ polarity and leaf margin formation.
Graphical Abstract
Highlights • Microtubules and cellulose microfibrils align along the ad-abaxial direction • Microtubule-mediated cell growth anisotropy contributes to leaf flattening • Mechanical feedback accounts for microtubule alignments in the ad-abaxial direction • Final organ shape depends on the degree of initial asymmetry of primordia
How do leaves maintain highly directional cell growth and divisions to form thin, flat laminae? Zhao et al. show that microtubules and cellulose microfibrils align along the main stress direction of internal walls to mediate anisotropic growth. Microtubule-mediated mechanical feedback amplifies an initial asymmetry and maintains directional growth.
Databáze: OpenAIRE