Thermostabilization mechanisms in thermophilic versus mesophilic three‐helix bundle proteins

Autor: Michelle E. McCully, Lauren M. Yearwood, Catrina Nguyen
Rok vydání: 2021
Předmět:
Zdroj: Journal of Computational Chemistry. 43:197-205
ISSN: 1096-987X
0192-8651
Popis: The engineered three-helix bundle, UVF, is thermostabilized entropically due to heightened, native-state dynamics. However, it is unclear whether this thermostabilization strategy is observed in natural proteins from thermophiles. We performed all-atom, explicit solvent molecular dynamics simulations of two three-helix bundles from thermophilic H. butylicus (2lvsN and 2lvsC) and compared their dynamics to a mesophilic three-helix bundle, the Engrailed homeodomain (EnHD). Like UVF, 2lvsC had heightened native dynamics, which it maintained without unfolding at 100°C. Shortening and rigidification of loops in 2lvsN and 2lvsC and increased surface hydrogen bonds in 2lvsN were observed, as is common in thermophilic proteins. A buried disulfide and salt bridge in 2lvsN and 2lvsC, respectively, provided some stabilization, and addition of a homologous disulfide bond in EnHD slowed unfolding. The transferability and commonality of stabilization strategies among members of the three-helix bundle fold suggest that these strategies may be general and deployable in designing thermostable proteins.
Databáze: OpenAIRE