Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation

Autor: Hervé Sanguin, Olivier Panaud, Florence Wisniewski-Dyé, Nathalie Picault, Benoît Drogue, Christel Llauro, Amel Chamam, Michael Mozar, Claire Prigent-Combaret
Přispěvatelé: Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Vétérinaire de Lyon (ENVL)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS), Laboratoire Génome et développement des plantes (LGDP), Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Ecole Nationale Vétérinaire de Lyon (ENVL), Region Rhone-Alpes, Centre National de la Recherche Scientifique, ANR project AZORIZ ANR-08-BLAN-0098, Ecologie microbienne ( EM ), Centre National de la Recherche Scientifique ( CNRS ) -Ecole Nationale Vétérinaire de Lyon ( ENVL ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique ( INRA ) -VetAgro Sup ( VAS ), Laboratoire Génome et développement des plantes ( LGDP ), Université de Perpignan Via Domitia ( UPVD ) -Centre National de la Recherche Scientifique ( CNRS )
Rok vydání: 2014
Předmět:
0106 biological sciences
F62 - Physiologie végétale - Croissance et développement
Plant Science
[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics
Phylogenetics and taxonomy

01 natural sciences
Interactions biologiques
Transcriptome
[ SDV.BIBS ] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
rhizobactérie
ComputingMilieux_MISCELLANEOUS
chemistry.chemical_classification
0303 health sciences
Vegetal Biology
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Structural Biology [q-bio.BM]

[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]
food and beverages
[SDV.BBM.MN]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Molecular Networks [q-bio.MN]

growth promoters [EN]
[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Biomolecules [q-bio.BM]

[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]
[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

Azospirillum lipoferum
plant defence
hormone signalling
Oryza sativa
[ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Molecular biology

lcsh:Plant culture
[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics
03 medical and health sciences
plant defense
Auxin
[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

Botany
Croissance
mécanisme de défense
hormone signaling
plant growth-promoting rhizobacteria
rice
transcriptome
azospirillum
[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry
Molecular Biology

[SDV.GEN]Life Sciences [q-bio]/Genetics
[ SDV ] Life Sciences [q-bio]
[ SDV.BC ] Life Sciences [q-bio]/Cellular Biology
P34 - Biologie du sol
[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Molecular biology

chemistry
Azospirillum
[ SDV.GEN ] Life Sciences [q-bio]/Genetics
Biologie végétale
Identification
[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology
[SDV]Life Sciences [q-bio]
F30 - Génétique et amélioration des plantes
[ SDV.BBM.BC ] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Biomolecules [q-bio.BM]

Plant defense against herbivory
Expression des gènes
Original Research Article
2. Zero hunger
Genetics
biology
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Biomolecules [q-bio.BM]

[ SDV.BV.AP ] Life Sciences [q-bio]/Vegetal Biology/Plant breeding
plante
[ SDV.GEN.GPL ] Life Sciences [q-bio]/Genetics/Plants genetics
Brachypodium
Transcription
[SDV.BC]Life Sciences [q-bio]/Cellular Biology
Rhizobacteria
[ SDV.BBM.MN ] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Molecular Networks [q-bio.MN]

Régulation hormonale
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology
lcsh:SB1-1110
[SDV.BBM]Life Sciences [q-bio]/Biochemistry
Molecular Biology

[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Biochemistry [q-bio.BM]

Gene
030304 developmental biology
biology.organism_classification
[SDV.BV.AP]Life Sciences [q-bio]/Vegetal Biology/Plant breeding
Gène
[ SDV.BID.SPT ] Life Sciences [q-bio]/Biodiversity/Systematics
Phylogenetics and taxonomy

[ SDV.BBM.BS ] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Biomolecules [q-bio.BM]

010606 plant biology & botany
Zdroj: Frontiers in Plant Science
Frontiers in Plant Science, Frontiers, 2014, 5, ⟨10.3389/fpls.2014.00607⟩
Frontiers in Plant Science, Frontiers, 2014, 5, pp.1-14. ⟨10.3389/fpls.2014.00607⟩
Frontiers in Plant Science, Frontiers, 2013, 5, pp.607
Frontiers in Plant Science (5), 1-14. (2014)
Frontiers in Plant Science, Vol 5 (2014)
ISSN: 1664-462X
Popis: International audience; Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defense and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyzes of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post-inoculation with Azospirillum lipoferum 4B (isolated from Cigalon) or Azospirillum sp. B510 (isolated from Nipponbare) and compared to the respective non-inoculated condition. A total of 7384 genes were significantly regulated, which represent about 16% of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83% of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defense, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signaling highlight the complexity of hormone signaling networks in the Azospirillum-rice cooperation.
Databáze: OpenAIRE