On the connectedness of the branch locus of moduli space of hyperelliptic Klein surfaces with one boundary

Autor: Ana M. Porto, Milagros Izquierdo, Antonio F. Costa
Rok vydání: 2017
Předmět:
Zdroj: Geometriae Dedicata, 177, 149–164
ISSN: 1793-6519
0129-167X
Popis: In this work, we prove that the hyperelliptic branch locus of orientable Klein surfaces of genus [Formula: see text] with one boundary component is connected and in the case of non-orientable Klein surfaces it has [Formula: see text] components, if [Formula: see text] is odd, and [Formula: see text] components for even [Formula: see text]. We notice that, for non-orientable Klein surfaces with two boundary components, the hyperelliptic branch loci are connected for all genera.
Databáze: OpenAIRE