On the connectedness of the branch locus of moduli space of hyperelliptic Klein surfaces with one boundary
Autor: | Ana M. Porto, Milagros Izquierdo, Antonio F. Costa |
---|---|
Rok vydání: | 2017 |
Předmět: |
Teichmüller space
Pure mathematics Matemáticas Social connectedness General Mathematics Riemann surface 010102 general mathematics Mathematical analysis Geometry Locus (genetics) 01 natural sciences Moduli space 010101 applied mathematics symbols.namesake Boundary component symbols Geometri 0101 mathematics Hyperelliptic curve Klein surface Mathematics |
Zdroj: | Geometriae Dedicata, 177, 149–164 |
ISSN: | 1793-6519 0129-167X |
Popis: | In this work, we prove that the hyperelliptic branch locus of orientable Klein surfaces of genus [Formula: see text] with one boundary component is connected and in the case of non-orientable Klein surfaces it has [Formula: see text] components, if [Formula: see text] is odd, and [Formula: see text] components for even [Formula: see text]. We notice that, for non-orientable Klein surfaces with two boundary components, the hyperelliptic branch loci are connected for all genera. |
Databáze: | OpenAIRE |
Externí odkaz: |