On additive MDS codes over small fields

Autor: Michel Lavrauw, Simeon Ball, Guillermo Gamboa
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
Jazyk: angličtina
Rok vydání: 2022
Předmět:
FOS: Computer and information sciences
Code (set theory)
94B27
51E22

Computer Networks and Communications
stabiliser codes
Computer Science - Information Theory
94 Information And Communication
Circuits::94B Theory of error-correcting codes and error-detecting codes [Classificació AMS]

Geometry
quantum codes
02 engineering and technology
01 natural sciences
Microbiology
Combinatorics
arcs
FOS: Mathematics
0202 electrical engineering
electronic engineering
information engineering

Mathematics - Combinatorics
Discrete Mathematics and Combinatorics
0101 mathematics
Mathematics
Error-correcting codes (Information theory)
Codis de correcció d'errors (Teoria de la informació)
Algebra and Number Theory
Conjecture
Information Theory (cs.IT)
Applied Mathematics
010102 general mathematics
020206 networking & telecommunications
additive codes
MDS conjecture
51 Geometry::51E Finite geometry and special incidence structures [Classificació AMS]
MDS codes
Combinatorics (math.CO)
Geometria finita
Matemàtiques i estadística::Geometria [Àrees temàtiques de la UPC]
Popis: Let \begin{document}$ C $\end{document} be a \begin{document}$ (n,q^{2k},n-k+1)_{q^2} $\end{document} additive MDS code which is linear over \begin{document}$ {\mathbb F}_q $\end{document} . We prove that if \begin{document}$ n \geq q+k $\end{document} and \begin{document}$ k+1 $\end{document} of the projections of \begin{document}$ C $\end{document} are linear over \begin{document}$ {\mathbb F}_{q^2} $\end{document} then \begin{document}$ C $\end{document} is linear over \begin{document}$ {\mathbb F}_{q^2} $\end{document} . We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over \begin{document}$ {\mathbb F}_q $\end{document} for \begin{document}$ q \in \{4,8,9\} $\end{document} . We also classify the longest additive MDS codes over \begin{document}$ {\mathbb F}_{16} $\end{document} which are linear over \begin{document}$ {\mathbb F}_4 $\end{document} . In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for \begin{document}$ q \in \{ 2,3\} $\end{document} .
Databáze: OpenAIRE