Higher rank hyperbolicity
Autor: | Urs Lang, Bruce Kleiner |
---|---|
Rok vydání: | 2020 |
Předmět: |
Lemma (mathematics)
Pure mathematics General Mathematics media_common.quotation_subject 010102 general mathematics Metric Geometry (math.MG) Group Theory (math.GR) Rank (differential topology) Curvature Infinity 01 natural sciences Plateau's problem Prime (order theory) Homeomorphism Metric space Mathematics - Metric Geometry 0103 physical sciences FOS: Mathematics Mathematics::Metric Geometry 010307 mathematical physics 0101 mathematics Mathematics - Group Theory Mathematics media_common |
Zdroj: | Inventiones mathematicae. 221:597-664 |
ISSN: | 1432-1297 0020-9910 |
DOI: | 10.1007/s00222-020-00955-w |
Popis: | The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry. We prove a number of closely analogous results for spaces of rank $n \ge 2$ in an asymptotic sense, under some weak assumptions reminiscent of nonpositive curvature. For this purpose we replace quasi-geodesic lines with quasi-minimizing (locally finite) $n$-cycles of $r^n$ volume growth; prime examples include $n$-cycles associated with $n$-quasiflats. Solving an asymptotic Plateau problem and producing unique tangent cones at infinity for such cycles, we show in particular that every quasi-isometry between two proper CAT(0) spaces of asymptotic rank $n$ extends to a class of $(n-1)$-cycles in the Tits boundaries. Comment: 59 pages. Visual metrics added, minor improvements |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |