Interval-Valued Linear Model

Autor: Xun Wang, Shoumei Li, Thierry Denoeux
Přispěvatelé: Beijing University of Technology, Heuristique et Diagnostic des Systèmes Complexes [Compiègne] (Heudiasyc), Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Excellence 'Maîtrise des Systèmes de Systèmes Technologiques' (Labex MS2T)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Proper linear model
General Computer Science
020209 energy
02 engineering and technology
Dp metric
Best linear unbiased prediction
U-statistic
01 natural sciences
Generalized linear mixed model
Lehmann–Scheffé theorem
lcsh:QA75.5-76.95
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
010104 statistics & probability
Minimum-variance unbiased estimator
Statistics
0202 electrical engineering
electronic engineering
information engineering

Applied mathematics
0101 mathematics
D metric
Mathematics
best binary linear unbiased estimation
Linear model
QA75.5-76.95
Covariance
Computational Mathematics
Electronic computers. Computer science
interval-valued linear model
020201 artificial intelligence & image processing
lcsh:Electronic computers. Computer science
least square estimation
Zdroj: International Journal of Computational Intelligence Systems, Vol 8, Iss 1 (2015)
International Journal of Computational Intelligence Systems
International Journal of Computational Intelligence Systems, Atlantis Press, 2015, 8 (1), pp.114-127. ⟨10.1080/18756891.2014.967010⟩
Scopus-Elsevier
ISSN: 1875-6883
1875-6891
DOI: 10.1080/18756891.2014.967010⟩
Popis: International audience; This paper introduces a new type of statistical model: the interval-valued linear model, which describes the linear relationship between an interval-valued output random variable and real-valued input variables. Firstly, notions of variance and covariance of set-valued and interval-valued random variables are introduced. Then, we give the definition of the interval-valued linear model and its least square estimation, as well as some properties of the least square estimator (LSE). Thirdly, we show that, whereas the best linear unbiased estimation does not exist, the best binary linear unbiased estimator exists and it is the LSE. Finally, we present simulation experiments and an application example regarding temperatures of cities affected by their latitude, which illustrates the application of the proposed model.
Databáze: OpenAIRE