Torsion calculations in Khovanov cohomology
Autor: | Dirk Schütz |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Algebra and Number Theory Computer Science::Information Retrieval 010102 general mathematics Astrophysics::Instrumentation and Methods for Astrophysics Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) Torus 01 natural sciences Mathematics::Geometric Topology Cohomology Mathematics::K-Theory and Homology 0103 physical sciences Torsion (algebra) Computer Science::General Literature 010307 mathematical physics 0101 mathematics Mathematics::Symplectic Geometry Mathematics |
Zdroj: | Journal of knot theory and its ramifications, 2020, Vol.29(8), pp.2071001 [Peer Reviewed Journal] |
DOI: | 10.1142/S0218216520710017 |
Popis: | We obtain information on torsion in Khovanov cohomology by performing calculations directly over [Formula: see text] for [Formula: see text] prime and [Formula: see text]. In particular, we get that the torus knots [Formula: see text] and [Formula: see text] contain torsion of order [Formula: see text] and [Formula: see text] in their Khovanov cohomology. |
Databáze: | OpenAIRE |
Externí odkaz: |