Similarities between spinocerebellar ataxia type 7 (SCA7) cell models and human brain: proteins recruited in inclusions and activation of caspase-3

Autor: V. Albanese, Anne-Sophie Lebre, K. H. El Hachimi, Alexis Brice, Cecilia Zander, Hiroto Fujigasaki, Charles Duyckaerts, Junko Takahashi, Giovanni Stevanin
Rok vydání: 2001
Předmět:
Zdroj: Human Molecular Genetics. 10:2569-2579
ISSN: 1460-2083
DOI: 10.1093/hmg/10.22.2569
Popis: Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant polyglutamine disorder presenting with progressive cerebellar ataxia and blindness. The molecular mechanisms underlying the selective neuronal death typical of SCA7 are unknown. We have established SCA7 cell culture models in HEK293 and SH-SY5Y cells, in order to analyse the effects of overexpression of the mutant ataxin-7 protein. The cells readily formed anti-ataxin-7 positive, fibrillar inclusions and small, nuclear electron dense structures. We have compared the inclusions in cells expressing mutant ataxin-7 and in human SCA7 brain tissue. There were consistent signs of ongoing abnormal protein folding, including the recruitment of heat-shock proteins and proteasome subunits. Occasionally, sequestered transcription factors were found. Activated caspase-3 was recruited into the inclusions in both the cell models and human SCA7 brain and its expression was upregulated in cortical neurones, suggesting that it may play a role in the disease process. Finally, on the ultrastructural level, there were signs of autophagy and nuclear indentations, indicative of a major stress response in cells expressing mutant ataxin-7.
Databáze: OpenAIRE