Incorporation and structural arrangement of microemulsion droplets in cylindrical pores of mesoporous silica

Autor: Viviana Cristiglio, Anja Hörmann, Glen J. Smales, Albert Prause, Michael Gradzielski, Andreas F. Thünemann, Gerhard H. Findenegg
Rok vydání: 2021
Předmět:
DOI: 10.6084/m9.figshare.14427981.v1
Popis: The behaviour of microemulsion (ME) droplets in mesoporous systems is highly important for understanding the immobilisation of drugs or chemical formulations, cleaning processes or enhanced oil recovery. The loading of pores as well as the structural organisation of MEs within the pores is a relevant parameter, especially for immobilisation applications. For this reason, the uptake of microemulsions in cylindrical pores of SBA-15 was investigated via adsorption and small-angle neutron scattering (SANS). Adsorption isotherms revealed an adsorption of the microemulsion droplets based on the adsorption of surfactant as a driving force. The adapted scattering model is based on the analysis of bare SBA-15 in full contrast conditions and employs microemulsions inside of SBA-15 measured at the silica contrast matching point. Accordingly, the structural arrangement of microemulsion droplets in the pores of SBA-15 was determined in good detail. Microemulsion droplets smaller than the pore size access the pores while retaining their spherical shape and become increasingly ordered for higher loading, where the droplets arrange in a dense packing of spherical droplets in a cylindrical pore. Interestingly, microemulsion droplets larger than the pore size can easily be incorporated, but become deformed upon entering and are present as elongated rod-like structures.
Databáze: OpenAIRE