Popis: |
Quartz is one of the most common minerals in soils, mostly present in sand and silt fractions. Although quartz is basically formed of SiO2, other elements can be easily detected and assessed nowadays using a portable X-ray fluorescence (pXRF) spectrometer. Our study aims to evaluate the chemical composition of different quartz varieties, identifying their main elements, and relating them to soil attributes. Six quartz varieties (hyaline, amethyst, milky, rose, smoky, and ferriferous) were analyzed via pXRF and 13 oxides/trace elements were identified and used for quartz discrimination (Al2O3, CaO, P2O5, SiO2, Cl, Cr, Fe, K2O, Mn, Rb, S, Ti, and V). Hyaline quartz was characterized by the highest SiO2 and the lowest contents of other elements. Al2O3 was the second-highest compound present in all varieties of quartz, reaching 21,547 mg kg−1 in the smoky variety. S, P2O5, Cl, SiO2, and K2O were the main components determined by Random Forest algorithm for discriminating quartz varieties. Some elements detected may serve as a reserve of nutrients to plants to be released in soils along weathering, depending on quartz particle size, soil texture, leaching, and associated attributes. pXRF enhanced the information on chemical characterization of quartz varieties, without the generation of chemical pollutants. |