Caveolin-1 polarization in migrating endothelial cells is directed by substrate topology not chemoattractant gradient
Autor: | JoAnne Baran, Marie-Odile Parat, Paul L. Fox, Virginie Santilman, Bela Anand-Apte |
---|---|
Rok vydání: | 2006 |
Předmět: |
Vascular Endothelial Growth Factors
Chemotaxis Caveolin 1 Motility Chemokinesis Substrate (chemistry) Cell Polarity Endothelial Cells Cell migration Cell Biology Biology Topology Cell biology Structural Biology Cell Movement Animals Humans Cattle Polarization (electrochemistry) Topology (chemistry) Aorta |
Zdroj: | Cell motility and the cytoskeleton. 63(11) |
ISSN: | 0886-1544 |
Popis: | Polarization is a hallmark of migrating cells, and an asymmetric distribution of proteins is essential to the migration process. Caveolin-1 is highly polarized in migrating endothelial cells (EC). Several studies have shown caveolin-1 accumulation in the front of migrating EC while others report its accumulation in the EC rear. In this paper we address these conflicting results on polarized localization of caveolin-1. We find evidence for the hypothesis that different modes of locomotion lead to differences in protein polarization. In particular, we show that caveolin-1 is primarily localized in the rear of cells migrating on a planar substrate, but in the front of cells traversing a three-dimensional pore. We also show that a chemoattractant, present either as a gradient or ubiquitously in the medium, does not alter caveolin-1 localization in cells in either mode of locomotion. Thus we conclude that substrate topology, and not the presence of a chemoattractant, directs the polarization of caveolin-1 in motile ECs. |
Databáze: | OpenAIRE |
Externí odkaz: |