Brittle fracture studied by ultra-high-speed synchrotron X-ray diffraction imaging

Autor: Antoine Petit, Sylvia Pokam, Frederic Mazen, Samuel Tardif, Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed, Margie P. Olbinado, Alexander Rack, Francois Rieutord
Přispěvatelé: Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Nanostructures et Rayonnement Synchrotron (NRS ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), SOITEC, European Synchroton Radiation Facility [Grenoble] (ESRF), ANR-18-CE08-0020,Fraindy,Initiation et Dynamique de la Fracture dans le procédé SmartCut™(2018)
Rok vydání: 2022
Předmět:
Zdroj: Journal of Applied Crystallography
Journal of Applied Crystallography, 2022, 55 (4), pp.911-918. ⟨10.1107/S1600576722006537⟩
ISSN: 1600-5767
0021-8898
DOI: 10.1107/s1600576722006537
Popis: In situ investigations of cracks propagating at up to 2.5 km s−1 along an (001) plane of a silicon single crystal are reported, using X-ray diffraction megahertz imaging with intense and time-structured synchrotron radiation. The studied system is based on the Smart Cut process, where a buried layer in a material (typically Si) is weakened by microcracks and then used to drive a macroscopic crack (10−1 m) in a plane parallel to the surface with minimal deviation (10−9 m). A direct confirmation that the shape of the crack front is not affected by the distribution of the microcracks is provided. Instantaneous crack velocities over the centimetre-wide field of view were measured and showed an effect of local heating by the X-ray beam. The post-crack movements of the separated wafer parts could also be observed and explained using pneumatics and elasticity. A comprehensive view of controlled fracture propagation in a crystalline material is provided, paving the way for the in situ measurement of ultra-fast strain field propagation.
Databáze: OpenAIRE