Deep learning for gradient flows using the Brezis-Ekeland principle

Autor: Laura Carini, Max Jensen, Robert Nürnberg
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: We propose a deep learning method for the numerical solution of partial differential equations that arise as gradient flows. The method relies on the Brezis--Ekeland principle, which naturally defines an objective function to be minimized, and so is ideally suited for a machine learning approach using deep neural networks. We describe our approach in a general framework and illustrate the method with the help of an example implementation for the heat equation in space dimensions two to seven.
Proceeding of the Equadiff 15 conference (https://conference.math.muni.cz/equadiff15)
Databáze: OpenAIRE