Deep learning for gradient flows using the Brezis-Ekeland principle
Autor: | Laura Carini, Max Jensen, Robert Nürnberg |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Popis: | We propose a deep learning method for the numerical solution of partial differential equations that arise as gradient flows. The method relies on the Brezis--Ekeland principle, which naturally defines an objective function to be minimized, and so is ideally suited for a machine learning approach using deep neural networks. We describe our approach in a general framework and illustrate the method with the help of an example implementation for the heat equation in space dimensions two to seven. Proceeding of the Equadiff 15 conference (https://conference.math.muni.cz/equadiff15) |
Databáze: | OpenAIRE |
Externí odkaz: |