PTOPO: Computing the geometry and the topology of parametric curves

Autor: Katsamaki, Christina, Rouillier, Fabrice, Tsigaridas, Elias, Zafeirakopoulos, Zafeirakis
Přispěvatelé: OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Gebze Teknik Üniversitesi [Gebze], This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement N° 754362., European Project: 754362,MathInParis(2017), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Rok vydání: 2023
Předmět:
Zdroj: Journal of Symbolic Computation
Journal of Symbolic Computation, 2022, ⟨10.1016/j.jsc.2022.08.012⟩
ISSN: 0747-7171
1095-855X
Popis: We consider the problem of computing the topology and describing the geometry of a parametric curve in $\mathbb{R}^n$. We present an algorithm, PTOPO, that constructs an abstract graph that is isotopic to the curve in the embedding space. Our method exploits the benefits of the parametric representation and does not resort to implicitization. Most importantly, we perform all computations in the parameter space and not in the implicit space. When the parametrization involves polynomials of degree at most $d$ and maximum bitsize of coefficients $\tau$, then the worst case bit complexity of PTOPO is $ \tilde{\mathcal{O}}_B(nd^6+nd^5\tau+d^4(n^2+n\tau)+d^3(n^2\tau+ n^3)+n^3d^2\tau)$. This bound matches the current record bound $\tilde{\mathcal{O}}_B(d^6+d^5\tau)$ for the problem of computing the topology of a plane algebraic curve given in implicit form. For plane and space curves, if $N = \max\{d, \tau \}$, the complexity of PTOPO becomes $\tilde{\mathcal{O}}_B(N^6)$, which improves the state-of-the-art result, due to Alc\'azar and D\'iaz-Toca [CAGD'10], by a factor of $N^{10}$. In the same time complexity, we obtain a graph whose straight-line embedding is isotopic to the curve. However, visualizing the curve on top of the abstract graph construction, increases the bound to $\tilde{\mathcal{O}}_B(N^7)$. For curves of general dimension, we can also distinguish between ordinary and non-ordinary real singularities and determine their multiplicities in the same expected complexity of PTOPO by employing the algorithm of Blasco and P\'erez-D\'iaz [CAGD'19]. We have implemented PTOPO in Maple for the case of plane and space curves. Our experiments illustrate its practical nature.
Databáze: OpenAIRE