The effect of kinematic hardening on the fatigue behaviour of bent high strength steel

Autor: Reza Hojjati Talemi, Dimitri Debruyne, Sanjay Gothivarekar, Sam Coppieters
Rok vydání: 2021
Předmět:
Zdroj: ESAFORM 2021.
Popis: The integration of forming in the fatigue modelling of cold-formed components significantly improves the predictive accuracy of the estimated life. The current study investigated the fatigue behaviour of a bent specimen made from a 5 mm thick, S900MC high strength steel plate. Because of its superior static and dynamic strength, this grade is progressively used for hollow cold-formed sections in mobile applications. However, it exhibits a strong stress saturation as well as limited formability. In this regard, a finite element modelling framework was adopted from previous research and further developed to integrate bending in the fatigue modelling and life estimation procedure. However, this framework currently ignores the possible influence of kinematic hardening and associated Bauschinger effect. For this reason, a numerical study was performed that compares isotropic with kinematic hardening for this specific application. First, the characteristic behaviour of these models was verified in a virtual tension-compression test. Subsequently, they were implemented in forming simulation followed by fatigue loading. Herein, the stress-strain evolution was investigated and a multi-axial fatigue criteria was used to map the sensitivity of the estimated life to the type of hardening. In general, the stress that entered the fatigue calculation was at least 21% lower for the kinematic model. As a result, a significant increase of 65% was observed for the estimated fatigue life, yielding a better comparison with experimental data.
Databáze: OpenAIRE