Exceptional sequences of maximal length on some surfaces isogenous to a higher product

Autor: Kyoung-Seog Lee
Rok vydání: 2016
Předmět:
Zdroj: Journal of Algebra. 454:308-333
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2015.09.053
Popis: Let $S=(C \times D)/G$ be a surface isogenous to a higher product of unmixed type with $p_g=q=0$, $G=(\mathbb{Z}/2)^3$ or $(\mathbb{Z}/2)^4$. We construct exceptional sequences of maximal length and quasiphantom categories on $S$.
We welcome any comments and suggestions!
Databáze: OpenAIRE