Exceptional sequences of maximal length on some surfaces isogenous to a higher product
Autor: | Kyoung-Seog Lee |
---|---|
Rok vydání: | 2016 |
Předmět: |
Surface (mathematics)
Derived category Algebra and Number Theory 010102 general mathematics Type (model theory) 01 natural sciences Combinatorics Mathematics - Algebraic Geometry Product (mathematics) 0103 physical sciences FOS: Mathematics 010307 mathematical physics 0101 mathematics Line (text file) Algebraic Geometry (math.AG) Mathematics |
Zdroj: | Journal of Algebra. 454:308-333 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2015.09.053 |
Popis: | Let $S=(C \times D)/G$ be a surface isogenous to a higher product of unmixed type with $p_g=q=0$, $G=(\mathbb{Z}/2)^3$ or $(\mathbb{Z}/2)^4$. We construct exceptional sequences of maximal length and quasiphantom categories on $S$. We welcome any comments and suggestions! |
Databáze: | OpenAIRE |
Externí odkaz: |