The Fatou coordinate for parabolic Dulac germs
Autor: | Vesna Županović, Maja Resman, Pavao Mardešić, Jean-Philippe Rolin |
---|---|
Přispěvatelé: | Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Department of Mathematics [Zagreb], Faculty of Science [Zagreb], University of Zagreb-University of Zagreb, Department of Applied Mathematics [Zagreb], Faculty of Electrical Engineering and Computing [Zagreb] (FER), This research was supported by: Croatian Science Foundation (HRZZ) project no. 2285, French ANR project STAAVF, French–Croatian bilateral Cogito project 33003TJClassification de points fixes et de singularités à l'aide d'epsilon-voisinages d'orbites et de courbes, Croatian UKF project Classifications of Dulac maps and epsilon-neighborhoods, My first collaboration grant 2018, project no. 7, the University of Zagreb research support for 2015 and 2016., ANR-11-BS01-0009,STAAVF,Singularités de Trajectoires de Champs de Vecteurs Analytiques et Algébriques(2011) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Monomial Class (set theory) Mathematics::Dynamical Systems Constructive proof Logarithm Transseries [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] orbits Dulac germ Asymptotic expansion Dynamical Systems (math.DS) 01 natural sciences MSC: 37C05 34C07 30B10 30B12 39A06 34E05 37C10 37C15 37C05 34C07 30B10 30B12 39A06 34E05 37C10 37C15 Mathematics::Algebraic Geometry FOS: Mathematics 0101 mathematics Mathematics - Dynamical Systems Mathematics Fatou coordinate Embedding in a flow diffeomorphisms Mathematics::Complex Variables Applied Mathematics 010102 general mathematics 010101 applied mathematics classification normal forms epsilon-neighborhoods Analysis |
Zdroj: | Journal of Differential Equations Journal of Differential Equations, Elsevier, 2019, 266 (6), pp.3479-3513. ⟨10.1016/j.jde.2018.09.008⟩ |
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2018.09.008 |
Popis: | We study the class of parabolic Dulac germs of hyperbolic polycycles. For such germs we give a constructive proof of the existence of a unique Fatou coordinate, admitting an asymptotic expansion in the power-iterated log scale. 31 pages. arXiv admin note: text overlap with arXiv:1606.02581 |
Databáze: | OpenAIRE |
Externí odkaz: |