The Fatou coordinate for parabolic Dulac germs

Autor: Vesna Županović, Maja Resman, Pavao Mardešić, Jean-Philippe Rolin
Přispěvatelé: Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Department of Mathematics [Zagreb], Faculty of Science [Zagreb], University of Zagreb-University of Zagreb, Department of Applied Mathematics [Zagreb], Faculty of Electrical Engineering and Computing [Zagreb] (FER), This research was supported by: Croatian Science Foundation (HRZZ) project no. 2285, French ANR project STAAVF, French–Croatian bilateral Cogito project 33003TJClassification de points fixes et de singularités à l'aide d'epsilon-voisinages d'orbites et de courbes, Croatian UKF project Classifications of Dulac maps and epsilon-neighborhoods, My first collaboration grant 2018, project no. 7, the University of Zagreb research support for 2015 and 2016., ANR-11-BS01-0009,STAAVF,Singularités de Trajectoires de Champs de Vecteurs Analytiques et Algébriques(2011)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Differential Equations
Journal of Differential Equations, Elsevier, 2019, 266 (6), pp.3479-3513. ⟨10.1016/j.jde.2018.09.008⟩
ISSN: 0022-0396
1090-2732
DOI: 10.1016/j.jde.2018.09.008
Popis: We study the class of parabolic Dulac germs of hyperbolic polycycles. For such germs we give a constructive proof of the existence of a unique Fatou coordinate, admitting an asymptotic expansion in the power-iterated log scale.
31 pages. arXiv admin note: text overlap with arXiv:1606.02581
Databáze: OpenAIRE