A comparison of logarithmic overconvergent de Rham-Witt and log-crystalline cohomology for projective smooth varieties with normal crossing divisor
Autor: | Thomas Zink, Andreas Langer |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Final version
Pure mathematics Algebra and Number Theory Logarithm Mathematics::Number Theory 010102 general mathematics de Rham-Witt complex Divisor (algebraic geometry) 01 natural sciences Mathematics::Algebraic Topology Algebra Mathematics::Algebraic Geometry Log-crystalline cohomology Mathematics::K-Theory and Homology Crystalline cohomology 0103 physical sciences 010307 mathematical physics Geometry and Topology 0101 mathematics Projective test Mathematical Physics Analysis Mathematics |
Popis: | In this note we derive for a smooth projective variety X with normal crossing divisor Z an integral comparison between the log-crystalline cohomology of the associated log-scheme and the logarithmic overconvergent de Rham-Witt cohomology defined by Matsuue. This extends our previous result that in the absence of a divisor Z the crystalline cohomology and overconvergent de Rham-Witt cohomology are canonically isomorphic. |
Databáze: | OpenAIRE |
Externí odkaz: |