A comparison of logarithmic overconvergent de Rham-Witt and log-crystalline cohomology for projective smooth varieties with normal crossing divisor

Autor: Thomas Zink, Andreas Langer
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Popis: In this note we derive for a smooth projective variety X with normal crossing divisor Z an integral comparison between the log-crystalline cohomology of the associated log-scheme and the logarithmic overconvergent de Rham-Witt cohomology defined by Matsuue. This extends our previous result that in the absence of a divisor Z the crystalline cohomology and overconvergent de Rham-Witt cohomology are canonically isomorphic.
Databáze: OpenAIRE